Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 145(20): 11392-11401, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37172080

ABSTRACT

The intermolecular cleavage of C-C bonds is a rare event. Herein, we report on a late transition-metal terminal nitrido complex, which upon oxidation undergoes insertion of the nitrido nitrogen atom into the aromatic C-C bond of ferrocene. This reaction path was confirmed through 15N and deuterium isotope labeling experiments of the nitrido complex and ferrocenium, respectively. Cyclic voltammetry and UV/vis spectroscopy monitoring of the reaction revealed that oxidation is the initial step, yielding the tentative radical cationic nitrido complex, which is experimentally supported by extended X and Q-band electron paramagnetic resonance (EPR) and ENDOR, UV/vis, vT 1H NMR, and vibrational spectroscopic data. Density functional theory (DFT) and multireference calculations of this highly reactive intermediate revealed an S = 1/2 ground state. The high reactivity can be traced to the increased electrophilicity in the oxidized complex. Based on high-level PNO-UCCSD(T) calculations and UV/vis kinetic measurements, it is proposed that the reaction proceeds by initial electrophilic exo attack of the nitrido nitrogen atom at the cyclopentadienyl ring and consecutive ring expansion to a pyridine ring.

2.
Chemistry ; 27(16): 5142-5159, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33411942

ABSTRACT

We report four new luminescent tetracationic bis-triarylborane DNA and RNA sensors that show high binding affinities, in several cases even in the nanomolar range. Three of the compounds contain substituted, highly emissive and structurally flexible bis(2,6-dimethylphenyl-4-ethynyl)arene linkers (3: arene=5,5'-2,2'-bithiophene; 4: arene=1,4-benzene; 5: arene=9,10-anthracene) between the two boryl moieties and serve as efficient dual Raman and fluorescence chromophores. The shorter analogue 6 employs 9,10-anthracene as the linker and demonstrates the importance of an adequate linker length with a certain level of flexibility by exhibiting generally lower binding affinities than 3-5. Pronounced aggregation-deaggregation processes are observed in fluorimetric titration experiments with DNA for compounds 3 and 5. Molecular modelling of complexes of 5 with AT-DNA, suggest the minor groove as the dominant binding site for monomeric 5, but demonstrate that dimers of 5 can also be accommodated. Strong SERS responses for 3-5 versus a very weak response for 6, particularly the strong signals from anthracene itself observed for 5 but not for 6, demonstrate the importance of triple bonds for strong Raman activity in molecules of this compound class. The energy of the characteristic stretching vibration of the C≡C bonds is significantly dependent on the aromatic moiety between the triple bonds. The insertion of aromatic moieties between two C≡C bonds thus offers an alternative design for dual Raman and fluorescence chromophores, applicable in multiplex biological Raman imaging.


Subject(s)
DNA , RNA , Binding Sites , Fluorometry , Models, Molecular
3.
J Am Chem Soc ; 142(44): 18907-18923, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33095990

ABSTRACT

Pressure-induced polymerization of aromatic compounds leads to novel materials containing sp3 carbon-bonded networks. The choice of the molecular species and the control of their arrangement in the crystal structures via intermolecular interactions, such as the arene-perfluoroarene interaction, can enable the design of target polymers. We have investigated the crystal structure compression and pressure-induced polymerization reaction kinetics of two polycyclic 1:1 arene-perfluoroarene cocrystals, naphthalene/octafluoronaphthalene (NOFN) and anthracene/octafluoronaphthalene (AOFN), up to 25 and 30 GPa, respectively, using single-crystal synchrotron X-ray diffraction, infrared spectroscopy, and theoretical computations based on density-functional theory. Our study shows the remarkable pressure stability of the parallel arene-perfluoroarene π-stacking arrangement and a reduction of the interplanar π-stacking separations by ca. 19-22% before the critical reaction distance is reached. A further strong, discontinuous, and irreversible reduction along the stacking direction at 20 GPa in NOFN (18.8%) and 25 GPa in AOFN (8.7%) indicates the pressure-induced breakdown of π-stacking by formation of σ-bonded polymers. The association of the structural distortion with the occurrence of a chemical reaction is confirmed by a high-pressure kinetic study using infrared spectroscopy, indicating one-dimensional polymer growth. Structural predictions for the fully polymerized high-pressure phases consisting of highly ordered rods of hydrofluorocarbons are presented based on theoretical computations, which are in excellent agreement with the experimentally determined unit-cell parameters. We show that the polymerization takes place along the arene-perfluoroarene π-stacking direction and that the lateral extension of the columns depends on the extension of the arene and perfluoroarene molecules.

4.
Chemistry ; 26(57): 12951-12963, 2020 Oct 09.
Article in English | MEDLINE | ID: mdl-32428359

ABSTRACT

Using a new divergent approach, conjugated triarylborane dendrimers were synthesized up to the 2nd generation. The synthetic strategy consists of three steps: 1) functionalization, via iridium catalyzed C-H borylation; 2) activation, via fluorination of the generated boronate ester with K[HF2 ] or [N(nBu4 )][HF2 ]; and 3) expansion, via reaction of the trifluoroborate salts with aryl Grignard reagents. The concept was also shown to be viable for a convergent approach. All but one of the conjugated borane dendrimers exhibit multiple, distinct and reversible reduction potentials, making them potentially interesting materials for applications in molecular accumulators. Based on their photophysical properties, the 1st generation dendrimers exhibit good conjugation over the whole system. However, the conjugation does not increase further upon expansion to the 2nd generation, but the molar extinction coefficients increase linearly with the number of triarylborane subunits, suggesting a potential application as photonic antennas.

5.
Chemistry ; 26(56): 12794-12808, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-31999019

ABSTRACT

Three different perfluoroalkylated borafluorenes (F Bf) were prepared and their electronic and photophysical properties were investigated. The systems have four trifluoromethyl moieties on the borafluorene moiety as well as two trifluoromethyl groups at the ortho positions of their exo-aryl moieties. They differ with regard to the para substituents on their exo-aryl moieties, being a proton (F XylF Bf, F Xyl: 2,6-bis(trifluoromethyl)phenyl), a trifluoromethyl group (F MesF Bf, F Mes: 2,4,6-tris(trifluoromethyl)phenyl) or a dimethylamino group (p-NMe2 -F XylF Bf, p-NMe2 -F Xyl: 4-(dimethylamino)-2,6-bis(trifluoromethyl)phenyl), respectively. All derivatives exhibit extraordinarily low reduction potentials, comparable to those of perylenediimides. The most electron-deficient derivative F MesF Bf was also chemically reduced and its radical anion isolated and characterized. Furthermore, all compounds exhibit very long fluorescent lifetimes of about 250 ns up to 1.6 µs; however, the underlying mechanisms responsible for this differ. The donor-substituted derivative p-NMe2 -F XylF Bf exhibits thermally activated delayed fluorescence (TADF) from a charge-transfer (CT) state, whereas the F MesF Bf and F XylF Bf borafluorenes exhibit only weakly allowed locally excited (LE) transitions due to their symmetry and low transition-dipole moments.

6.
Chemistry ; 26(2): 438-453, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31593316

ABSTRACT

We synthesized new pyrene derivatives with strong bis(para-methoxyphenyl)amine donors at the 2,7-positions and n-azaacene acceptors at the K-region of pyrene. The compounds possess a strong intramolecular charge transfer, leading to unusual properties such as emission in the red to NIR region (700 nm), which has not been reported before for monomeric pyrenes. Detailed photophysical studies reveal very long intrinsic lifetimes of >100 ns for the new compounds, which is typical for 2,7-substituted pyrenes but not for K-region substituted pyrenes. The incorporation of strong donors and acceptors leads to very low reduction and oxidation potentials, and spectroelectrochemical studies show that the compounds are on the borderline between localized Robin-Day class-II and delocalized Robin-Day class-III species.

7.
Chemistry ; 25(60): 13777-13784, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31471986

ABSTRACT

N-heterocyclic olefins (NHOs), relatives of N-heterocyclic carbenes (NHCs), exhibit high nucleophilicity and soft Lewis basic character. To investigate their π-electron donating ability, NHOs were attached to triarylborane π-acceptors (A) giving donor (D)-π-A compounds 1-3. In addition, an enamine π-donor analogue (4) was synthesized for comparison. UV-visible absorption studies show a larger red shift for the NHO-containing boranes than for the enamine analogue, a relative of cyclic (alkyl)(amino) carbenes (CAACs). Solvent-dependent emission studies indicate that 1-4 have moderate intramolecular charge-transfer (ICT) behavior. Electrochemical investigations reveal that the NHO-containing boranes have extremely low reversible oxidation potentials (e.g., for 3, E ox 1 / 2 =-0.40 V vs. ferrocene/ferrocenium, Fc/Fc+ , in THF). Time-dependent (TD) DFT calculations show that the HOMOs of 1-3 are much more destabilized than that of the enamine-containing 4, which confirms the stronger donating ability of NHOs.

8.
Chemistry ; 25(32): 7679-7688, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-30900778

ABSTRACT

The stability of tetracationic triarylboranes in dilute aqueous solution was investigated by tuning the steric demand of the linker in a (para-(N,N,N-trimethylammonio)xylyl)2 B-(linker)-B(para-(N,N,N-trimethylammonio)xylyl)2 structure. With increasing steric bulk of the linker, namely 1,4-phenylene, 2,2'''-(3,3'''-dimethyl)-5,2':5',2'':5'',5'''-quaterthiophene, 9,10-anthracenylene, and 4,4'''-(5'-(3,5-dimethylphenyl))(5''-(3''',5'''-dimethylphenyl))-2',2''-bithiophene, the stability of the compounds increased. The anthracene-based chromophore, compound 3M is water-stable for at least 48 h, is nontoxic to cells and exhibits an exceedingly high fluorescence quantum yield of 0.86 in water making it an ideal candidate for confocal live-cell imaging of lysosomes.


Subject(s)
Boranes/chemical synthesis , Cell Tracking/methods , Fluorescent Dyes/chemical synthesis , Anthracenes/chemistry , Boranes/chemistry , Cell Survival/drug effects , Fluorescent Dyes/chemistry , HeLa Cells , Humans , Molecular Structure , Optical Imaging/methods , Water/chemistry
9.
Chemistry ; 22(30): 10638-50, 2016 Jul 18.
Article in English | MEDLINE | ID: mdl-27319753

ABSTRACT

A set of pyridine monoimine (PMI) rhenium(I) tricarbonyl chlorido complexes with substituents of different steric and electronic properties was synthesized and fully characterized. Spectroscopic (NMR and IR) and single-crystal X-ray diffraction analyses of these complexes showed that the redox-active PMI ligands are neutral and that the overall electronic structure is little affected by the choices of the substituent at the ligand backbone. One- and two-electron reduction products were prepared from selected starting compounds and could also be characterized by multiple spectroscopic methods and X-ray diffraction. The final product of a one-electron reduction in THF is a diamagnetic metal-metal-bonded dimer after loss of the chlorido ligand. Bond lengths in and NMR chemical shifts of the PMI ligand backbone indicate partial electron transfer to the ligand. Two-electron reduction in THF also leads to the loss of the chlorido ligand and a pentacoordinate complex is obtained. The comparison with reported bond lengths and (13) C NMR chemical shifts of doubly reduced free pyridine monoaldimine ligands indicates that both redox equivalents in the doubly reduced rhenium complex investigated here are located in the PMI ligand. With diamagnetic complexes varying over three formal reduction stages at the PMI ligand we were, for the first time, able to establish correlations of the (13) C NMR chemical shifts with the relevant bond lengths in redox-active ligands over a full redox series.

10.
Chemistry ; 21(23): 8497-503, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25924730

ABSTRACT

[((Ar) PMI)Mo(CO)4 ] complexes (PMI=pyridine monoimine; Ar=Ph, 2,6-di-iso-propylphenyl) were synthesized and their electrochemical properties were probed with cyclic voltammetry and infrared spectroelectrochemistry (IR-SEC). The complexes undergo a reduction at more positive potentials than the related [(bipyridine)Mo(CO)4 ] complex, which is ligand based according to IR-SEC and DFT data. To probe the reaction product in more detail, stoichiometric chemical reduction and subsequent treatment with CO2 resulted in the formation of a new product that is assigned as a ligand-bound carboxylate, [( iPr 2PhPMI)Mo(CO)3 (CO2 )](2-) , by NMR spectroscopic methods. The CO2 adduct [( iPr 2PhPMI)Mo(CO)3 (CO2 )](2-) could not be isolated and fully characterized. However, the C-C coupling between the CO2 molecule and the PDI ligand was confirmed by X-ray crystallographic characterization of one of the decomposition products of [( iPr 2PhPMI)Mo(CO)3 (CO2 )](2-) .

11.
J Am Chem Soc ; 135(10): 3971-82, 2013 Mar 13.
Article in English | MEDLINE | ID: mdl-23431955

ABSTRACT

Si-H activation in triethyl- and triarylsilanes by a square-planar pyridine-diimine iridium complex with a terminal nitrido unit leads to the corresponding silyl amido complexes, which were unambiguously characterized by X-ray crystallography. Based on detailed combined kinetic and theoretical studies (DFT), direct addition of the Si-H bond to the iridium nitrido unit is proposed. The electronic propensities of the transition states for the Si-H activation were probed with a Hammett series of para-substituted triarylsilanes HSi(C6H5)2(4-C6H4-X). Based on the combination of experimental and theoretical studies, two independent pathways for this process are proposed, which point toward an ambiphilic propensity of the nitrido unit. Alternative pathways and the charge transfer in the transition states were also investigated. Furthermore, the barriers for the related H-H and C-H activation processes in dihydrogen and methane were analyzed.


Subject(s)
Hydrogen/chemistry , Iridium/chemistry , Organometallic Compounds/chemistry , Quantum Theory , Silanes/chemistry , Silicon/chemistry , Crystallography, X-Ray , Imines/chemistry , Models, Molecular , Molecular Structure , Pyridines/chemistry , Silanes/chemical synthesis
12.
Dalton Trans ; 40(37): 9512-24, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21845255

ABSTRACT

Intramolecular activation processes of vulnerable ligand C-H bonds frequently limit the thermal stability and accessibility of late transition metal complexes with terminal metal nitrido units. In this study chloro substitution of the 2,6-ketimine N-aryl substituents (2,6-C(6)H(3)R(2), R = Cl) of the pyridine, diimine ligand is probed to increase the stability of square-planar iridium nitrido compounds. The thermal stability of iridium azido precursor and nitrido compounds was studied by a combination of thermoanalytical methods (DTG/MS and DSC) and were compared to the results for the related complexes with 2,6-dialkyl substituted N-aryl groups (R = Me, iPr). The investigations were complemented by DFT calculations, which allowed us to unravel details of the thermal decomposition pathways and provided mechanistic insights of further conversion steps and fluctional processes. The DTG/MS and DSC measurements revealed two different types of thermolysis pathways for the azido compounds. For the complexes with R = Cl and iPr substituents, two well-separated exothermic processes were observed. The first moderately exothermic loss of N(2) is followed by a second, strongly exothermic transformation. This contrasts the experimental results for the compound with 2,6-dimethyl substituents (R = Me), where both steps proceed concurrently in the same temperature range. The separation of the two thermal steps in the 2,6-dichloro substituted derivative allowed us to develop a protocol for the isolation of the highly insoluble nitrido complex, which was characterized by UV/vis, IR-spectroscopy and elemental analysis. Its constitution was further confirmed by reaction with silanes, which gave the corresponding silyl amido complexes.

SELECTION OF CITATIONS
SEARCH DETAIL
...