Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 17(9): 6532-44, 2015 Mar 07.
Article in English | MEDLINE | ID: mdl-25659944

ABSTRACT

Our previous temperature-cycle study reported FRET transitions between different states on FRET-labeled polyprolines [Yuan et al., PCCP, 2011, 13, 1762]. The conformational origin of such transitions, however, was left open. In this work, we apply temperature-cycle microscopy of single FRET-labeled polyproline and dsDNA molecules and compare their responses to resolve the conformational origin of different FRET states. We observe different steady-state FRET distributions and different temperature-cycle responses in the two samples. Our temperature-cycle results on single molecules resemble the results in steady-state measurements but reveal a dark state which could not be observed otherwise. By comparing the timescales and probabilities of different FRET states in temperature-cycle traces, we assign the conformational heterogeneity reflected by different FRET states to linker dynamics, dye-chain and dye-dye interactions. The dark state and low-FRET state are likely due to dye-dye interactions at short separations.


Subject(s)
Microscopy/methods , Molecular Conformation , Temperature , Fluorescence Resonance Energy Transfer
3.
J Am Chem Soc ; 132(4): 1240-2, 2010 Feb 03.
Article in English | MEDLINE | ID: mdl-20050649

ABSTRACT

Essentially complete photoinduced electron transfer quenching of the fluorescence of a perylene-calixarene compound occurs in poly(methyl acrylate) and poly(vinyl acetate) above their glass transition temperatures (T(g)), but the fluorescence is completely recovered upon cooling the polymer matrix to a few degrees below the T(g). The switching can be observed in an on/off fashion at the level of individual molecules.

4.
J Am Chem Soc ; 131(47): 17070-1, 2009 Dec 02.
Article in English | MEDLINE | ID: mdl-19929017

ABSTRACT

Fluorescence microscopy and conductivity measurements reveal a remarkably strong effect of hydrophobic groups on the mobility of protons in water. The addition of 5 M of tetramethylurea (4 methyl groups per molecule) results in a reduction of the proton mobility by a factor of approximately 10: hydrophobic hydration strongly suppresses proton mobility. These observations demonstrate the collective nature of aqueous proton transport.


Subject(s)
Protons , Water/chemistry , Microscopy, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...