Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 65(20): 5959-73, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25271261

ABSTRACT

Energy resources in plants are managed in continuously changing environments, such as changes occurring during the day/night cycle. Shading is an environmental disruption that decreases photosynthesis, compromises energy status, and impacts on crop productivity. The trehalose pathway plays a central but not well-defined role in maintaining energy balance. Here, we characterized the maize trehalose pathway genes and deciphered the impacts of the diurnal cycle and disruption of the day/night cycle on trehalose pathway gene expression and sugar metabolism. The maize genome encodes 14 trehalose-6-phosphate synthase (TPS) genes, 11 trehalose-6-phosphate phosphatase (TPP) genes, and one trehalase gene. Transcript abundance of most of these genes was impacted by the day/night cycle and extended dark stress, as were sucrose, hexose sugars, starch, and trehalose-6-phosphate (T6P) levels. After extended darkness, T6P levels inversely followed class II TPS and sucrose non-fermenting-related protein kinase 1 (SnRK1) target gene expression. Most significantly, T6P no longer tracked sucrose levels after extended darkness. These results showed: (i) conservation of the trehalose pathway in maize; (ii) that sucrose, hexose, starch, T6P, and TPS/TPP transcripts respond to the diurnal cycle; and(iii) that extended darkness disrupts the correlation between T6P and sucrose/hexose pools and affects SnRK1 target gene expression. A model for the role of the trehalose pathway in sensing of sucrose and energy status in maize seedlings is proposed.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins/genetics , Zea mays/physiology , Carbohydrate Metabolism , Circadian Rhythm , Darkness , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Multigene Family , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified , Protein Serine-Threonine Kinases , Seedlings/genetics , Seedlings/physiology , Seedlings/radiation effects , Starch/metabolism , Sucrose/metabolism , Sugar Phosphates/metabolism , Trehalose/analogs & derivatives , Trehalose/metabolism , Zea mays/genetics , Zea mays/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...