Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 11823, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37479709

ABSTRACT

The family of graphene-based materials welcomed a new member, borophene, in 2014. Research on synthesis routes and experimental study on physicochemical and biological (especially in vivo) properties still is strongly desired in order to evaluate its practical potential as a drug delivery-system. The effect of two-dimensional borophene nanoflakes on cells, systems and the entire animal organism has not been studied so far. Therefore, we investigated in vivo its biocompatibility with hemocytes in the Tenebrio molitor as a model organism. Short-term studies demonstrated that borophene nanoflakes at doses of 0.5, 1 or 2 µg of nanoflakes per insect did not induce hemocytotoxicity. Hemocytes exposed to nanoflakes showed morphology, adhesiveness and ability to form filopodia as in the control hemocytes. A detailed study indicates that borophene nanoflakes do not: (i) generate intracellular reactive oxygen species in hemocytes, (ii) affect the mitochondrial membrane potential and (iii) interfere with phagocytosis. Therefore, this contribution presents new in vivo insights into the group of two-dimensional materials which are one of the most promising materials for biomedical applications owing to their special structure and unique properties. However, long-term studies in insects and other animals are still necessary to confirm that borophene is biocompatible and biologically safe.


Subject(s)
Coleoptera , Tenebrio , Animals , Hemocytes , Research Design , Adhesiveness
2.
Polymers (Basel) ; 16(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38201775

ABSTRACT

Achieving the desired properties of paper such as strength, durability, and printability remains challenging. Paper mills employ calcium carbonate (CaCO3) as a filler to boost paper's brightness, opacity, and printability. However, weak interaction between cellulose fibers and CaCO3 particles creates different issues in the papermaking industry. Therefore, this study explores the influence of various inorganic additives as crosslinkers such as mesoporous SiO2 nanospheres, TiO2 nanoparticles, h-BN nanoflakes, and hydroxylated h-BN nanoflakes (h-BN-OH) on inorganic fillers content in the paper. They were introduced to the paper pulp in the form of a polyethylene glycol (PEG) suspension to enable bonding between the inorganic particles and the paper pulp. Our findings have been revealed based on detailed microscopic and structural analyses, e.g., transmission and scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and N2 adsorption/desorption isotherms. Finally, the inorganic fillers (CaCO3 and respective inorganic additives) content was evaluated following ISO 1762:2001 guidelines. Conducted evaluations allowed us to identify the most efficient crosslinker (SiO2 nanoparticles) in terms of inorganic filler retention. Paper sheets modified with SiO2 enhance the retention of the fillers by ~12.1%. Therefore, we believe these findings offer valuable insights for enhancing the papermaking process toward boosting the quality of the resulting paper.

3.
Sci Rep ; 12(1): 15683, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36127387

ABSTRACT

Electrochemical exfoliation of nonconductive boron to few-layered borophene is reported. This unique effect is achieved via the incorporation of bulk boron into metal mesh inducing electrical conductivity and opening a venue for borophene fabrication via this feasible strategy. The experiments were conducted in various electrolytes providing a powerful tool to fabricate borophene flakes with a thickness of ~ 3-6 nm with different phases. The mechanism of electrochemical exfoliation of boron is also revealed and discussed. Therefore, the proposed methodology can serve as a new tool for bulk scale fabrication of few-layered borophene and speed up the development of borophene-related research and its potential application.

4.
RSC Adv ; 10(7): 4032-4039, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-35492678

ABSTRACT

The study presents enhancement of photocatalytic hydrogen generation after metal-organic framework (MOF5) carbonization at 700 °C and its utilization as a co-catalyst of graphitic carbon nitride (gCN). Thermal treatment of MOF5 affected the formation of ZnO nanoparticles which played the role of co-catalyst for H2 evolution. Moreover, significant band-gap narrowing of MOF5 was observed, which also affected the narrowing of the hybrid band gap. The appropriate conduction band position of the carbonized MOF allowed photogenerated electron transfer from gCN to the carbonized MOF, hence, improving the separation of the charge carriers and reducing the overpotential for H2 generation. The mechanism of the photocatalytic process was also discussed.

5.
ACS Appl Mater Interfaces ; 11(51): 47739-47749, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31774643

ABSTRACT

Polymeric carbon nitride (PCN), which demonstrates unique properties, has been widely explored, mostly in photocatalysis; however, the evaluation of its biocompatibility is still needed. Herein, the cytocompatibility of PCN with different lateral size distributions (A-PCN with 160 nm, B-PCN with 20 nm, and C-PCN with 10 nm dominating lateral sizes) was investigated. The viability of three cell lines (L929, MCF-7, and HepG2) has been determined using cell counting kit-8 (CCK-8), neutral red uptake (NRU), and lactate dehydrogenase (LDH) leakage assays. It was found that the highest cytotoxicity of PCN was observed for flakes with a lateral size of ∼20 nm (B-PCN) in three cell lines after 48 h of exposition. The uptake process of B-PCN sheets labeled with fluorescein isothiocyanate (FITC) by cells was also the most effective. Confocal laser scanning microscopy and atomic force microscopy revealed the nanomaterial distribution throughout the cytoplasm and perinuclear region. The results demonstrated the correlation among size, internalization process, and cytocompatibility of the tested polymeric carbon nitride structures.


Subject(s)
Nanostructures/chemistry , Nitriles/chemistry , Polymers/chemistry , Cell Line , Cell Survival/drug effects , Hep G2 Cells , Humans , L-Lactate Dehydrogenase/metabolism , MCF-7 Cells , Microscopy, Confocal , Nitriles/adverse effects , Polymers/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...