Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Clin Med ; 12(2)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36675620

ABSTRACT

BACKGROUND: Available knowledge about malocclusion and cephalometric variables and their connection with an increased risk of condylar displacement (CD) is scarce. This article aims to present current information on the relationship between centric relation-maximum intercuspal position discrepancies and maxillofacial morphology and malocclusion in patients seeking orthodontic treatment as well as to identify those who require expanded diagnostic evaluation for this disorder. METHODS: This review analyzed the PubMed, Cochrane Library, Web of Science, and Scopus electronic databases up to February 2022. Keywords and additional manual searches were performed. Literature selection was based the PRISMA-ScR checklist. The JBI Critical Appraisal Tool assessed the methodological quality of included studies. RESULTS: The databases search provided 2321 studies. A total of 10 studies were included in this review after eligibility criteria and JBI assessment. This review was separated into five parts that evaluated CD correlations depending on the following: maxillofacial structure in different vertical and sagittal skeletal patterns, vertical, horizontal, and transverse malocclusions. CONCLUSIONS: A hyperdivergent facial skeletal structure is a risk factor for increased CD, particularly in the vertical dimension. The condylar processes are usually displaced in a posteroinferior direction. Further studies are warranted to elucidate the relationship among remaining skeletal and dental malocclusions and the occurrence of CD.

2.
Cancers (Basel) ; 11(10)2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31597313

ABSTRACT

: Oxidative stress plays a key role in breast cancer progression. However, little is still known about the relationship between the BRCA1 mutation, the incidence of breast cancer and oral homeostasis. This is the first study to evaluate the secretory function of salivary glands, biomarkers of redox balance, and oxidative damage to proteins and lipids in the saliva of subjects with the BRCA1 mutation. Ninety eight women were enrolled in the study and allocated to four groups based on molecular DNA testing: generally healthy patients without the BRCA1 mutation, patients with breast cancer but without the BRCA1 mutation, generally healthy patients with the BRCA1 mutation, and patients with both breast cancer and the BRCA1 mutation. We demonstrated that saliva from breast cancer patients with the BRCA1 mutation is characterized by enhanced antioxidant capacity and a higher degree of oxidative damage to proteins and lipids. The BRCA1 mutation can cause a predisposition to early salivary gland dysfunction, both in patients with breast cancer and in healthy individuals, leading to a decrease in salivary proteins. Using cluster analysis, we showed that salivary peroxidase, advanced glycation end-products (AGE), total antioxidant status (TAS) and malondialdehyde (MDA) may have particular clinical significance in non-invasive diagnostics of breast cancer.

3.
Mycologia ; 111(4): 624-631, 2019.
Article in English | MEDLINE | ID: mdl-31322986

ABSTRACT

Malassezia pachydermatis causes infections of the skin and mucous membranes, especially in individuals with metabolic, hormonal, and immunological disorders. The search for M. pachydermatis properties that differentiate isolates from healthy and infected animals may result in the identification of typically commensal and potentially pathogenic strains within the entire species. We aimed to determine and compare protein profiles of M. pachydermatis strains isolated from 30 dogs with clinical symptoms of otitis externa and 34 dogs without symptoms of any disease. Two-dimensional gel electrophoresis was applied, and proteins distinguishing the two groups of strains were identified by liquid chromatography coupled with tandem mass spectrometry. Significant differences were found between potentially pathogenic and commensal isolates. The most significant finding was the presence of nicotinamide adenine dinucleotide phosphate (NADP)-dependent mannitol dehydrogenase and ketol-acid reductoisomerase among M. pachydermatis strains obtained from dogs with otitis externa. Nevertheless, it is not clear whether they are associated directly with the pathogenicity or they play the role of fungal allergen. On the basis of these findings, we can conclude that there may be two distinct groups of M. pachydermatis strains-one typically commensal and the other with properties that enhance the infection process. These results may be used for more precise diagnosis and identification of potentially pathogenic strains in the future.


Subject(s)
Dermatomycoses/veterinary , Dog Diseases , Otitis Externa/microbiology , Animals , Dermatomycoses/diagnosis , Dermatomycoses/microbiology , Dermatomycoses/therapy , Dog Diseases/diagnosis , Dog Diseases/microbiology , Dog Diseases/therapy , Dogs , Electrophoresis, Gel, Two-Dimensional , Fungal Proteins , Malassezia/classification , Malassezia/metabolism , Malassezia/pathogenicity , Otitis Externa/diagnosis , Otitis Externa/therapy
4.
Vet Dermatol ; 29(6): 476-e160, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30251451

ABSTRACT

BACKGROUND: Malassezia pachydermatis is an opportunistic yeast involved in skin and ear canal infections of dogs and cats. Reports suggest that strains of M. pachydermatis resistant to commonly used antifungal agents may be emerging. Therefore, new therapeutic strategies should be explored. OBJECTIVES: The synergistic effect of oxythiamine (OT) and ketoconazole (KTC) was analysed using a reference strain and field isolates (n = 66) of M. pachydermatis. Hydrogel formulations containing these components also were evaluated. METHODS AND MATERIALS: The minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations (MFCs) of OT, KTC and their mixtures were determined by a broth macrodilution method. The antifungal effects of hydrogel formulations were determined by a plate diffusion method. RESULTS: The MIC and MFC values of OT were in the range 0.08 × 103 to 10 × 103  mg/L. All M. pachydermatis strains showed higher susceptibility to KTC (MICs and MFCs in the range 0.04-0.32 mg/L). Formulations that combined OT and KTC showed a synergistic effect for all tested isolates (n = 66). Hydrogels that contained OT at a concentration of 10 × 103 or 20 × 103  mg/L and KTC at the concentration of 0.1 × 103  mg/L showed a stronger effect than a commercially available product with KTC alone (20 × 103  mg/L). CONCLUSIONS AND CLINICAL IMPORTANCE: Synergy of these drugs may allow for successful topical treatment which utilizes lower doses of KTC without changing its therapeutic effectiveness. Hydrogel formulations proved to be attractive drug carriers for potential topical use.


Subject(s)
Antifungal Agents/therapeutic use , Dermatomycoses/veterinary , Dog Diseases/microbiology , Ketoconazole/therapeutic use , Malassezia , Otitis Externa/veterinary , Oxythiamine/therapeutic use , Animals , Antifungal Agents/administration & dosage , Dermatomycoses/drug therapy , Dog Diseases/drug therapy , Dogs , Drug Synergism , Drug Therapy, Combination , Hydrogel, Polyethylene Glycol Dimethacrylate/administration & dosage , Ketoconazole/administration & dosage , Malassezia/drug effects , Microbial Sensitivity Tests/veterinary , Otitis Externa/drug therapy , Otitis Externa/microbiology , Oxythiamine/administration & dosage
5.
Mycologia ; 110(4): 666-676, 2018.
Article in English | MEDLINE | ID: mdl-30130476

ABSTRACT

Malassezia pachydermatis causes infections of the skin and mucous membranes, especially in animals. It is commonly accepted that symptom manifestation depends on the physiological status of the host (different metabolic, hormonal, and immunological disorders). However, it should be considered whether distinct strains of M. pachydermatis could have different pathogenic potential and maintain opposite relations with the host, such as commensalism or parasitism. The scope of this study was to explore the population structure, genetic diversity, and phylogenetic relationships of M. pachydermatis strains isolated from dogs with clinical symptoms of otitis externa and from healthy dogs in order to investigate their relationships and evolutionary history. For all tests, a group of 30 strains derived from dogs with otitis externa and 34 strains from healthy dogs were used. The level of genetic diversity was initially assessed by polymerase chain reaction (PCR)-based random amplification of polymorphic DNA (RAPD-PCR), whereas evolutionary history was assessed by comparison of the nucleotide sequences of the internal transcribed spacer ITS1 region of nuclear rDNA. RAPD-PCR fingerprinting revealed a high level of genetic polymorphism in both tested groups (85% of unique profiles), but clinical isolates usually grouped together with other strains from otitis externa cases. Sequencing analysis identified 17 distinct genotypes with 59 polymorphic sites within both populations; however, putatively virulent strains were more closely related, indicating a probable correlation between the genotype and the virulence potential. Therefore, the hypothesis that M. pachydermatis virulence depends solely on the host's properties should be reconsidered including evolutionary and epidemiological data.


Subject(s)
Dog Diseases/microbiology , Genetic Variation , Malassezia/genetics , Malassezia/pathogenicity , Otitis Externa/veterinary , Animals , DNA, Intergenic , DNA, Ribosomal , Dog Diseases/epidemiology , Dogs/microbiology , Genotype , Malassezia/isolation & purification , Malassezia/physiology , Otitis Externa/epidemiology , Otitis Externa/microbiology , Phylogeny , Polymerase Chain Reaction , Polymorphism, Genetic , Random Amplified Polymorphic DNA Technique , Symbiosis , Virulence
6.
Biosci Rep ; 38(1)2018 02 28.
Article in English | MEDLINE | ID: mdl-29208764

ABSTRACT

Thiamine plays a very important coenzymatic and non-coenzymatic role in the regulation of basic metabolism. Thiamine diphosphate is a coenzyme of many enzymes, most of which occur in prokaryotes. Pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes as well as transketolase are the examples of thiamine-dependent enzymes present in eukaryotes, including human. Therefore, thiamine is considered as drug or diet supplement which can support the treatment of many pathologies including neurodegenerative and vascular system diseases. On the other hand, thiamine antivitamins, which can interact with thiamine-dependent enzymes impeding their native functions, thiamine transport into the cells or a thiamine diphosphate synthesis, are good propose to drug design. The development of organic chemistry in the last century allowed the synthesis of various thiamine antimetabolites such as amprolium, pyrithiamine, oxythiamine, or 3-deazathiamine. Results of biochemical and theoretical chemistry research show that affinity to thiamine diphosphate-dependent enzymes of these synthetic molecules exceeds the affinity of native coenzyme. Therefore, some of them have already been used in the treatment of coccidiosis (amprolium), other are extensively studied as cytostatics in the treatment of cancer or fungal infections (oxythiamine and pyrithiamine). This review summarizes the current knowledge concerning the synthesis and mechanisms of action of selected thiamine antivitamins and indicates the potential of their practical use.


Subject(s)
Drug Design , Thiamine Pyrophosphate/metabolism , Thiamine/metabolism , Amprolium/chemistry , Amprolium/metabolism , Antimetabolites/therapeutic use , Biological Transport , Humans , Oxythiamine/antagonists & inhibitors , Oxythiamine/metabolism , Pyrithiamine/antagonists & inhibitors , Pyrithiamine/metabolism , Thiamine/antagonists & inhibitors , Thiamine/chemical synthesis , Thiamine Pyrophosphate/chemistry
7.
Mycoses ; 59(1): 20-7, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26559663

ABSTRACT

Malassezia pachydermatis can cause infections of the skin and mucous membranes, especially in animals. It becomes a problem also in medicine. It is considered that metabolic disorders as well as hormonal and immunological status of the host promote diseases caused by M. pachydermatis. Here we consider whether specific features of fungi could also favour infections. We checked whether there are differences in lipid profiles between strains obtained from dogs with otitis externa and strains obtained from healthy dogs. Lipid profiles were determined using thin layer chromatography and gas chromatography-mass spectrometry. All analyses were carried out on 32 strains derived from dogs with otitis externa and 31 strains isolated from dogs without symptoms of disease. The results show that strains isolated from dogs without symptoms of otitis externa are characterised by a higher content of fatty acids. They contain significantly more behenic and lignoceric acids on medium without addition of lipids, and more oleic acid and total monounsaturated fatty acids on medium with lipids supplementation. These strains have also a higher content of esters of ergosterol and triglycerides. Data obtained show differences which may be specific features of M. pachydermatis-specific strains related to the ability of infection, which could be not directly related of the host condition.


Subject(s)
Dermatomycoses/veterinary , Dog Diseases/microbiology , Lipids/analysis , Malassezia/chemistry , Malassezia/isolation & purification , Otitis Externa/veterinary , Animals , Dermatomycoses/microbiology , Dogs , Fatty Acids/analysis , Otitis Externa/microbiology
8.
Mycoses ; 59(2): 108-16, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26691773

ABSTRACT

Severe skin diseases and systemic fungaemia are caused by Malassezia pachydermatis and Candida albicans respectively. Antifungal therapies are less effective because of chronic character of infections and high percentage of relapses. Therefore, there is a great need to develop new strategies of antifungal therapies. We previously found that oxythiamine decreases proliferation of yeast (Saccharomyces cerevisiae), therefore we suggest that thiamine antivitamins can be considered as antifungal agents. The aim of this study was the comparison of thiamine antivitamins (oxythiamine, amprolium, thiochrome, tetrahydrothiamine and tetrahydrooxythiamine) inhibitory effect on the growth rate and energetic metabolism efficiency in non-pathogenic S. cerevisiae and two potentially pathogenic species M. pachydermatis and C. albicans. Investigated species were cultured on a Sabouraud medium supplemented with trace elements in the presence (40 mg l(-1)) or absence of each tested antivitamins to estimate their influence on growth rate, enzyme activity and kinetic parameters of pyruvate decarboxylase and malate dehydrogenase of each tested species. Oxythiamine was the only antivitamin with antifungal potential. M. pachydermatis and S. cerevisiae were the most sensitive, whereas C. albicans was the least sensitive to oxythiamine action. Oxythiamine can be considered as supportive agent in superficial mycoses treatment, especially those caused by species from the genus Malassezia.


Subject(s)
Antifungal Agents/pharmacology , Antimetabolites/pharmacology , Candida albicans/drug effects , Candidiasis, Cutaneous/drug therapy , Dermatomycoses/drug therapy , Malassezia/drug effects , Thiamine/antagonists & inhibitors , Antifungal Agents/therapeutic use , Antimetabolites/therapeutic use , Candida albicans/growth & development , Candidiasis, Cutaneous/microbiology , Dermatomycoses/microbiology , Fungemia/drug therapy , Fungemia/microbiology , Humans , Malassezia/growth & development , Microbial Sensitivity Tests , Oxythiamine/pharmacology , Oxythiamine/therapeutic use , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development
9.
J. physiol. biochem ; 68(3): 345-351, sept. 2012.
Article in English | IBECS | ID: ibc-122323

ABSTRACT

Thyroid diseases are one of the most common metabolic disorders in the human population. In this work, we present data concerning changes in the activity and kinetic parameters of several enzymes associated with both anabolic (glucose-6-phosphate dehydrogenase-G6PDH, EC 1.1.1.49; 6-phosphogluconate dehydrogenase-6PGDH, EC 1.1.1.44; malic enzyme-ME, EC 1.1.1.40; and isocitrate dehydrogenase-IDH, EC 1.1.1.42) and catabolic (NAD-dependent malate dehydrogenase-NAD-MDH, EC 1.1.1.37; and lactate dehydrogenase-LDH, EC 1.1.1.27) processes under conditions of hypothyroidism and T3 treatment. Hypothyroidism was induced in rats by the surgical removal of the thyroid gland. T3-treated rats were injected by T3 (0.5 mg T3/kg body weight daily during 10 days). We have found that T3 treatment caused an increase of NAD-MDH activity as well as heart hypertrophy whereas the activity of LDH increased in the direction of pyruvate reduction. Moreover, we observed increased activity of both enzymes in the liver. These results confirm earlier observation concerning the relevance of oxidative metabolism in the heart under T3 treatment. Hypothyroidism resulted in changes in the LDH activity in the heart whereas NAD-MDH activity did not change. Moreover, our data show that T3 treatment caused an increase of G6PDH, 6PGDH, and ME activities in the liver. We also observed a decrease of IDH activity in both organs, whereas hypothyroidism caused the opposite effect. This data indicate that either deficiency or excess of thyroid hormones can prove to be particularly dangerous for the physiology of the heart muscle by disturbing bioenergetic and anabolic processes (AU)


Subject(s)
Animals , Rats , Hypothyroidism/drug therapy , Triiodothyronine/pharmacokinetics , Liver/enzymology , Heart/physiopathology , Myocardium/enzymology
10.
J Physiol Biochem ; 68(3): 345-51, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22274913

ABSTRACT

Thyroid diseases are one of the most common metabolic disorders in the human population. In this work, we present data concerning changes in the activity and kinetic parameters of several enzymes associated with both anabolic (glucose-6-phosphate dehydrogenase-G6PDH, EC 1.1.1.49; 6-phosphogluconate dehydrogenase-6PGDH, EC 1.1.1.44; malic enzyme-ME, EC 1.1.1.40; and isocitrate dehydrogenase-IDH, EC 1.1.1.42) and catabolic (NAD-dependent malate dehydrogenase-NAD-MDH, EC 1.1.1.37; and lactate dehydrogenase-LDH, EC 1.1.1.27) processes under conditions of hypothyroidism and T(3) treatment. Hypothyroidism was induced in rats by the surgical removal of the thyroid gland. T(3)-treated rats were injected by T(3) (0.5 mg T(3)/kg body weight daily during 10 days). We have found that T(3) treatment caused an increase of NAD-MDH activity as well as heart hypertrophy whereas the activity of LDH increased in the direction of pyruvate reduction. Moreover, we observed increased activity of both enzymes in the liver. These results confirm earlier observation concerning the relevance of oxidative metabolism in the heart under T(3) treatment. Hypothyroidism resulted in changes in the LDH activity in the heart whereas NAD-MDH activity did not change. Moreover, our data show that T(3) treatment caused an increase of G6PDH, 6PGDH, and ME activities in the liver. We also observed a decrease of IDH activity in both organs, whereas hypothyroidism caused the opposite effect. This data indicate that either deficiency or excess of thyroid hormones can prove to be particularly dangerous for the physiology of the heart muscle by disturbing bioenergetic and anabolic processes.


Subject(s)
Hypothyroidism/metabolism , Liver/enzymology , Myocardium/enzymology , Triiodothyronine/metabolism , Animals , Glucosephosphate Dehydrogenase/metabolism , Heart , Hypothyroidism/enzymology , Kinetics , L-Lactate Dehydrogenase/metabolism , Liver/metabolism , Male , Myocardium/metabolism , Phosphogluconate Dehydrogenase/metabolism , Rats , Rats, Wistar
11.
Mycoses ; 55(3): e106-13, 2012 May.
Article in English | MEDLINE | ID: mdl-22066764

ABSTRACT

Malassezia pachydermatis and Candida albicans are fungi involved in the skin diseases and systemic infections. The therapy of such infections is difficult due to relapses and problems with pathogen identification. In our study, we compare the fatty acids profile of M. pachydermatis, C. albicans and S. cerevisiae to identify diagnostic markers and to investigate the effect of oxythiamine (OT) on the lipid composition of these species. Total fatty acid content is threefold higher in C. albicans and M. pachydermatis compared with S. cerevisiae. These two species have also increased level of polyunsaturated fatty acids (PUFA) and decreased content of monounsaturated fatty acids (MUFA). We noted differences in the content of longer chain (>18) fatty acids between studied species (for example a lack of 20 : 1 in S. cerevisiae and 22 : 0 in M. pachydermatis and C. albicans). OT reduces total fatty acids content in M. pachydermatis by 50%. In S. cerevisiae, OT increased PUFA whereas it decreased MUFA content. In C. albicans, OT decreased PUFA and increased MUFA and SFA content. The results show that the MUFA to PUFA ratio and the fatty acid profile could be useful diagnostic tests to distinguish C. albicans, M. pachydermatis and S. cerevisiae, and OT affected the lipid metabolism of the investigated species, especially M. pachydermatis.


Subject(s)
Candida albicans/metabolism , Dermatomycoses/microbiology , Fatty Acids/metabolism , Malassezia/metabolism , Oxythiamine/pharmacology , Saccharomyces cerevisiae/metabolism , Candida albicans/chemistry , Candida albicans/drug effects , Fatty Acids/analysis , Humans , Malassezia/chemistry , Malassezia/drug effects , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/drug effects
12.
Postepy Hig Med Dosw (Online) ; 65: 447-69, 2011 Jul 06.
Article in Polish | MEDLINE | ID: mdl-21734329

ABSTRACT

For over 70 years thiamine (vitamin B1) has aroused the interest of biologists, biochemists and medical doctors because of its multilateral participation in key biochemical and physiological processes. The thiamine molecule is composed of pyrimidine and thiazole rings which are linked by a methylene bridge. It is synthesized by microorganisms, fungi and plants, whereas animals and humans have to obtain it from food. There are several known forms of vitamin B1 inside cells: free thiamine, three phosphate esters (mono-, di-, and triphosphate), and the recently found adenosine thiamine triphosphate. Thiamine has a dual, coenzymatic and non-coenzymatic role. First of all, it is a precursor of thiamin diphosphate, which is a coenzyme for over 20 characterized enzymes which are involved in cell bioenergetic processes leading to the synthesis of ATP. Moreover, these enzymes take part in the biosynthesis of pentose (required for the synthesis of nucleotides), amino acids and other organic compounds of cell metabolism. On the other hand, recent discoveries show the non-coenzymatic role of thiamine derivatives in the process of regulation of gene expression (riboswitches in microorganisms and plants), the stress response, and perhaps so far unknown signal transduction pathways associated with adverse environmental conditions, or transduction of nerve signals with participation of thiamine triphosphate and adenosine thiamine triphosphate. From the clinical point of view thiamine deficiency is related to beri-beri, Parkinson disease, Alzheimer disease, Wernicke-Korsakoff syndrome and other pathologies of the nervous system, and it is successfully applied in medical practice. On the other hand, identifying new synthetic analogues of thiamine which could be used as cytostatics, herbicides or agents preventing deficiency of vitamin B1 is currently the major goal of the research. In this paper we present the current state of knowledge of thiamine and its derivatives, indicating the participation of these compounds in the regulation of cell metabolism at both the coenzymatic and non-coenzymatic level.


Subject(s)
Cells/drug effects , Cells/metabolism , Thiamine/metabolism , Thiamine/pharmacology , Humans
13.
Can J Microbiol ; 54(9): 734-41, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18772936

ABSTRACT

Candida albicans and Malassezia pachydermatis cause human and animal infections of the skin and internal organs. We compare the properties of two enzymes, pyruvate decarboxylase (PDC) and malate dehydrogenase (MDH), from these species and from Saccharomyces cerevisiae cultivated under aerobic and anaerobic conditions to find differences between the enzymes that adapt pathogens for virulence and help us in searching for new antifungal agents. Malassezia pachydermatis did not show any growth under anaerobic conditions, as opposed to C. albicans and S. cerevisiae. Under aerobic conditions, C. albicans showed the highest growth rate. Malassezia pachydermatis, contrary to the others, did not show any PDC activity, simultaneously showing the highest MDH activity under aerobic conditions and a Km value for oxaloacetate lower than S. cerevisiae. Candida albicans and S. cerevisiae showed a strong decrease in MDH activity under anaerobic conditions. Candida albicans shows four different isoforms of MDH, while M. pachydermatis and S. cerevisiae are characterized by two and three isoforms. Candida albicans shows about a twofold lower activity of PDC but, simultaneously, almost a threefold lower Km value for pyruvate in comparison with S. cerevisiae. The PDC apoform share under aerobic conditions in C. albicans was 47%, while in S. cerevisiae was only 26%; under anaerobic conditions, the PDC apoform decreased to 12% and 8%, respectively. The properties of enzymes from C. albicans show its high metabolic flexibility (contrary to M. pachydermatis) and cause easy switching between fermentative and oxidative metabolism. This feature allows C. albicans to cause both surface and deep infections. We take into consideration the use of thiamin antimetabolites as antifungal factors that can affect both oxidative and fermentative metabolism.


Subject(s)
Fungal Proteins/chemistry , Fungal Proteins/metabolism , Fungi/enzymology , Malate Dehydrogenase/chemistry , Malate Dehydrogenase/metabolism , Pyruvate Decarboxylase/chemistry , Pyruvate Decarboxylase/metabolism , Aerobiosis , Anaerobiosis , Candida albicans/chemistry , Candida albicans/enzymology , Candida albicans/genetics , Fungal Proteins/genetics , Fungi/chemistry , Fungi/genetics , Humans , Kinetics , Malassezia/chemistry , Malassezia/enzymology , Malassezia/genetics , Malate Dehydrogenase/genetics , Mycoses/microbiology , Pyruvate Decarboxylase/genetics , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...