Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 16: 954949, 2022.
Article in English | MEDLINE | ID: mdl-36278016

ABSTRACT

Single-molecule localization microscopy (SMLM) enables the high-resolution visualization of organelle structures and the precise localization of individual proteins. However, the expected resolution is not achieved in tissue as the imaging conditions deteriorate. Sample-induced aberrations distort the point spread function (PSF), and high background fluorescence decreases the localization precision. Here, we synergistically combine sensorless adaptive optics (AO), in-situ 3D-PSF calibration, and a single-objective lens inclined light sheet microscope (SOLEIL), termed (AO-SOLEIL), to mitigate deep tissue-induced deteriorations. We apply AO-SOLEIL on several dSTORM samples including brains of adult Drosophila. We observed a 2x improvement in the estimated axial localization precision with respect to widefield without aberration correction while we used synergistic solution. AO-SOLEIL enhances the overall imaging resolution and further facilitates the visualization of sub-cellular structures in tissue.

2.
Opt Express ; 30(16): 28290-28300, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36299028

ABSTRACT

Single-molecule localization microscopy has developed into a widely used technique to overcome the diffraction limit and enables 3D localization of single-emitters with nanometer precision. A widely used method to enable 3D encoding is to use a cylindrical lens or a phase mask to engineer the point spread function (PSF). The performance of these PSFs is often assessed by comparing the precision they achieve, ignoring accuracy. Nonetheless, accurate localization is required in many applications, such as multi-plane imaging, measuring and modelling of physical processes based on volumetric data, and 3D particle averaging. However, there are PSF model mismatches in the localization schemes due to how reference PSFs are obtained, look-up-tables are created, or spots are fitted. Currently there is little insight in how these model mismatches give rise to systematic axial localization errors, how large these errors are, and how to mitigate them. In this theoretical and simulation work we use a vector PSF model, which incorporates super-critical angle fluorescence (SAF) and the appropriate aplanatic correction factor, to analyze the errors in z-localization. We introduce theory for defining the focal plane in SAF conditions and analyze the predicted axial errors for an astigmatic PSF, double-helix PSF, and saddle-point PSF. These simulations indicate that the absolute axial biases can be as large as 140 nm, 250 nm, and 120 nm for the astigmatic, saddle-point, and double-helix PSF respectively, with relative errors of more than 50%. Finally, we discuss potential experimental methods to verify these findings and propose a workflow to mitigate these effects.

3.
Biomed Opt Express ; 13(6): 3275-3294, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35781973

ABSTRACT

High-NA light sheet illumination can improve the resolution of single-molecule localization microscopy (SMLM) by reducing the background fluorescence. These approaches currently require custom-made sample holders or additional specialized objectives, which makes the sample mounting or the optical system complex and therefore reduces the usability of these approaches. Here, we developed a single-objective lens-inclined light sheet microscope (SOLEIL) that is capable of 2D and 3D SMLM in thick samples. SOLEIL combines oblique illumination with point spread function PSF engineering to enable dSTORM imaging in a wide variety of samples. SOLEIL is compatible with standard sample holders and off-the-shelve optics and standard high NA objectives. To accomplish optimal optical sectioning we show that there is an ideal oblique angle and sheet thickness. Furthermore, to show what optical sectioning delivers for SMLM we benchmark SOLEIL against widefield and HILO microscopy with several biological samples. SOLEIL delivers in 15 µm thick Caco2-BBE cells a 374% higher intensity to background ratio and a 54% improvement in the estimated CRLB compared to widefield illumination, and a 184% higher intensity to background ratio and a 20% improvement in the estimated CRLB compared to HILO illumination.

4.
Angew Chem Int Ed Engl ; 61(5): e202114388, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34788496

ABSTRACT

The development of improved zeolite materials for applications in separation and catalysis requires understanding of mass transport. Herein, diffusion of single molecules is tracked in the straight and sinusoidal channels of the industrially relevant ZSM-5 zeolites using a combination of single-molecule localization microscopy and uniformly oriented zeolite thin films. Distinct motion behaviors are observed in zeolite channels with the same geometry, suggesting heterogeneous guest-host interactions. Quantification of the diffusion heterogeneities in the sinusoidal and straight channels suggests that the geometry of zeolite channels dictates the mobility and motion behavior of the guest molecules, resulting in diffusion anisotropy. The study of hierarchical zeolites shows that the addition of secondary pore networks primarily enhances the diffusivity of sinusoidal zeolite channels, and thus alleviating the diffusion limitations of microporous zeolites.

5.
Nat Commun ; 12(1): 3407, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099685

ABSTRACT

Single-Molecule Localization Microscopy (SMLM) provides the ability to determine molecular organizations in cells at nanoscale resolution, but in complex biological tissues, where sample-induced aberrations hamper detection and localization, its application remains a challenge. Various adaptive optics approaches have been proposed to overcome these issues, but the exact performance of these methods has not been consistently established. Here we systematically compare the performance of existing methods using both simulations and experiments with standardized samples and find that they often provide limited correction or even introduce additional errors. Careful analysis of the reasons that underlie this limited success enabled us to develop an improved method, termed REALM (Robust and Effective Adaptive Optics in Localization Microscopy), which corrects aberrations of up to 1 rad RMS using 297 frames of blinking molecules to improve single-molecule localization. After its quantitative validation, we demonstrate that REALM enables to resolve the periodic organization of cytoskeletal spectrin of the axon initial segment even at 50 µm depth in brain tissue.


Subject(s)
Brain/pathology , Optics and Photonics/methods , Single Molecule Imaging/methods , Algorithms , Animals , COS Cells , Chlorocebus aethiops , Microscopy, Fluorescence/instrumentation , Rats , Single Molecule Imaging/instrumentation , Software
6.
Biomed Opt Express ; 11(2): 735-751, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32133221

ABSTRACT

Single-molecule localization microscopy (SMLM) enables fluorescent microscopy with nanometric resolution. While localizing molecules close to the coverslip is relatively straightforward using high numerical aperture (NA) oil immersion (OI) objectives, optical aberrations impede SMLM deeper in watery samples. Adaptive optics (AO) with a deformable mirror (DM) can be used to correct such aberrations and to induce precise levels of astigmatism to encode the z-position of molecules. Alternatively, the use of water immersion (WI) objectives might be sufficient to limit the most dominant aberrations. Here we compare SMLM at various depths using either WI or OI with or without AO. In addition, we compare the performance of a cylindrical lens and a DM for astigmatism-based z-encoding. We find that OI combined with adaptive optics improves localization precision beyond the performance of WI-based imaging and enables deep (>10 µm) 3D localization.

7.
Nat Methods ; 17(1): 59-63, 2020 01.
Article in English | MEDLINE | ID: mdl-31819263

ABSTRACT

MINFLUX offers a breakthrough in single molecule localization precision, but is limited in field of view. Here we combine centroid estimation and illumination pattern induced photon count variations in a conventional widefield imaging setup to extract position information over a typical micrometer-sized field of view. We show a near two-fold improvement in precision over standard localization with the same photon count on DNA-origami nanostructures and tubulin in cells, using DNA-PAINT and STORM imaging.


Subject(s)
DNA/metabolism , DNA/ultrastructure , Lighting/methods , Microscopy, Fluorescence/methods , Models, Theoretical , Nanostructures/ultrastructure , Single Molecule Imaging/methods , Animals , Humans , Lighting/instrumentation , Nanotechnology/methods , Photons
8.
Opt Express ; 27(14): 20012-20027, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31503753

ABSTRACT

A superoscillatory lens (SOL) is known to produce a sub-diffraction hotspot that is useful for high-resolution imaging. SOLs have not yet been directly used in a confocal reflection setup, as the SOL suffers from poor imaging properties. Additionally, the illuminating intensity distribution of the SOL still has high-intensity rings called sidelobes coexisting with the central hotspot. By means of a reflection setup, which does not have the SOL in the detection chain, thereby mitigating the poor imaging properties, we assessed the resolution capabilities of a SOL. This was done for different objects, whose dimensions were both above and below the SOL field-of-view (FOV). We found that the sidelobe illumination degrades the imaging properties in the case of extended objects, limiting the applicability of a SOL system.

9.
Opt Express ; 24(5): 4996-5013, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-29092328

ABSTRACT

We show that the position of single molecules in all three spatial dimensions can be estimated alongside its emission color by diffractive optics based design of the Point Spread Function (PSF). The phase in a plane conjugate to the aperture stop of the objective lens is modified by a diffractive structure that splits the spot on the camera into closely spaced diffraction orders. The distance between and the size of these sub-spots are a measure of the emission color. Estimation of the axial position is enabled by imprinting aberrations such as astigmatism and defocus onto the orders. The overall spot shape is fitted with a fully vectorial PSF model. Proof-of-principle experiments on quantum dots indicate that a spectral precision of 10 to 20 nm, an axial localization precision of 25 to 50 nm, and a lateral localization precision of 10 to 30 nm can be achieved over a 1 µm range of axial positions for on average 800 signal photons and 17 background photons/pixel. The method appears to be rather sensitive to PSF model errors such as aberrations, giving in particular rise to biases in the fitted wavelength of up to 15 nm.

SELECTION OF CITATIONS
SEARCH DETAIL
...