Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36294205

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are mainly accumulated in soil. Plants secrete enzymes that transform or biodegrade PAHs in soil. Some plant species are more effective in stimulating the biodegradation of these pollutants than other species. This study was undertaken to evaluate the influence of crop rotation on PAH concentrations in soil. Four crops were grown in rotation: sugar beets, spring barley, maize, and spring wheat. Soil samples for the study were obtained from a long-term field experiment established in 1986 in Balcyny, Poland. The concentrations of PAHs were analyzed in soil samples gathered over a period of 12 years (1998-2009). An attempt was made to evaluate the effect of crop rotation (sugar beets, spring barley, maize, and spring wheat) on PAH concentrations in soil. The content of PAHs in soil samples was measured by gas chromatography with flame ionization detection. Data were processed statistically by repeated measures ANOVA. The concentrations of ∑16 PAHs were lowest in soil after sugar beet cultivation, and highest in soil after maize cultivation. It can be concluded that maize was the plant with the greatest adverse effect on the content of heavy PAH in the soil, a completely different effect can be attributed to spring wheat, which has always been shown to reduce the content of heavy PAH in the soil. Weather conditions affected PAHs levels in soil, and PAH content was highest in soil samples collected in a year with the driest growing season. This arrangement suggests a greater influence of weather conditions than of the cultivated plant.


Subject(s)
Hordeum , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Fertilizers/analysis , Soil/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Manure , Soil Pollutants/analysis , Crops, Agricultural , Triticum/metabolism , Zea mays , Minerals/metabolism , Sugars/metabolism
2.
Article in English | MEDLINE | ID: mdl-36012095

ABSTRACT

The aim of this study was to assess the effect of long-term fertilization with manure and mineral fertilizers on the content and distribution of selected polycyclic aromatic hydrocarbons (PAHs)-the content of a sum of 16 polycyclic aromatic hydrocarbons, light and heavy PAHs in two soil layers (0-30 cm and 30-60 cm). The material for the study was composed of soil samples collected from the sixth rotation in a long-term, controlled field experiment, conducted in Balcyny since 1986. The content of 16 polycyclic aromatic hydrocarbons was determined on a gas chromatographer coupled with an FID detector. In order to evaluate the significance of differences between the mean effects on the tested characteristics, a non-parametric Mann-Whitney U test for two independent samples was applied. A higher content of the sum (16) of PAHs was found in the 0-30 cm than in the 30-60 cm soil layer. The research results also demonstrated a higher content of the sum of light PAHs in the 30-60 cm than in the 0-30 cm soil layer. The content of heavy PAHs, in turn, was significantly higher in the upper than in the deeper soil layer. This dependence appeared in both the soil fertilized with manure and soil nourished only with mineral fertilizers.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Fertilization , Fertilizers , Manure , Polycyclic Aromatic Hydrocarbons/analysis , Soil , Soil Pollutants/analysis
3.
Article in English | MEDLINE | ID: mdl-36612343

ABSTRACT

Insect farming is growing in popularity, and in addition to insect meal, it generates waste products such as exuviae and frass, which can be recycled in agriculture. The aim of this incubation experiment was to evaluate the effect of Tenebrio molitor L. frass on selected chemical and biological properties of deacidified peat, which is widely used in horticulture. The optimal rate of frass fertilizer in peat for growing vegetables and ornamental plants was determined, with special emphasis on mineral nitrogen levels. Peat was fertilized with five nitrogen rates, 0, 50, 100, 200, and 400 mg dm-3, and supplied with frass or urea. The study demonstrated that frass can be used as organic fertilizer. An increase in the nitrogen rate significantly increased mineral nitrogen content and electrical conductivity and decreased Ca content in peat. Both frass and urea increased the ammonification rate at the beginning of incubation and the nitrification rate from the second week of the experiment. Higher frass rates (5 and 10 g dm-3) increased the content of plant-available nutrients (nitrogen, phosphorus, magnesium, potassium, and sodium) in peat as well as the abundance of microorganisms supporting organic matter mineralization. Unlike frass, urea increased the counts of nitrogen-fixing bacteria in peat.


Subject(s)
Soil , Tenebrio , Animals , Soil/chemistry , Fertilizers , Horticulture , Minerals , Plants , Urea , Nitrogen
4.
Environ Monit Assess ; 192(5): 315, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32342208

ABSTRACT

The aim of this study has been to evaluate the effect of sewage sludge and composted sewage sludge and municipal waste on the content of various forms of P in soil. The experiment scheme: C, control; NPK; FYM; DGSS, dried and granulated sewage sludge; CSS, composed sewage sludge; CSSS, composted sewage sludge and straw; CMMW, composted mixed municipal waste; CMGW, composted municipal green waste. The content of bound P was determined in the fractions: F1, easily soluble; F2, exchangeable; F3, organic; F4, carbonate; F5, stable organic-mineral and mineral bonds; and F6, residual. The NPK fertilisation as well as the soil fertilisation with organic substances raised the P-total content and of P bound in the fractions: F3, F4, F5 and F6. The highest amount of phosphorus in the studied soil was in fraction F3 (phosphorus in organic compounds) and the lowest in fraction F1 (phosphorus in the ionic form as H2PO4- and HPO42-). Composted sludge and straw introduced into the soil increased the content of readily soluble P (F1), while the NPK effect was reversed. NPK fertilisation and enhancement of soil organic matter (except CSSS, CMGW) led to a reduction of the P content in F2 fraction. The content of available P determined by the Egner-Riehm method depended on the content of C-organic, P-total and CEC soil. Among the determined phosphorus fractions, the content of available P was most strongly correlated with the content of P bound in the carbonate fraction (F4) and residual fraction (F6) and, less strongly, with the organic phosphorus fraction.


Subject(s)
Environmental Monitoring , Fertilizers , Phosphorus , Sewage , Soil , Fertilizers/analysis , Fertilizers/standards , Phosphorus/analysis , Soil/chemistry
5.
Sci Rep ; 10(1): 4573, 2020 03 12.
Article in English | MEDLINE | ID: mdl-32165651

ABSTRACT

A study was conducted to explore the effects of fertilisation with farmyard manure (FYM) and mineral fertilisers on the content of PAHs in soil. The analyses were made on soil samples (collected in 1998-2009) from a long-term field experiment set up in 1986 in Balcyny near Ostróda. The content of light and heavy polycyclic aromatic hydrocarbons was determined on a gas chromatograph coupled with an FID detector. The analytical data were processed statistically according to an analysis of variance with repeated measurements. The content of light and heavy polycyclic aromatic hydrocarbons was significantly higher in soil fertilised with FYM than in soil nourished only with mineral fertilisers. The effect of increasing doses of potassium on total light PAHs in soil depended on a fertilisation system - there was either a distinct decrease in soil fertilised with mineral substances alone or a slight increase in soil fertilised with manure. Regular soil liming significantly raised the ∑ of heavy PAHs in soil treated with manure but significantly decreased it in soil supplied only mineral fertilisers.

6.
Environ Monit Assess ; 190(10): 567, 2018 Sep 03.
Article in English | MEDLINE | ID: mdl-30178215

ABSTRACT

Field trials were conducted in 2004-2015, in Balcyny, on haplic Luvisol formed out of light boulder clay. The experiment consisted of the following treatments: control (no fertilization), NPK, manure (FYM), dried pelleted sewage sludge (DPSS), composted sewage sludge (CSS), compost made from municipal sewage sludge and straw (SSCS), compost Dano made from unsorted household waste (CUHW), and compost produced from urban green waste (CUGW). Over a period of 12 years, 30 t DM/ha of each manure and composts were used, that is, 10 t DM/ha in each rotation of a crop rotation sequence. Nitrogen fertilization was kept on the same level on all experimental plots. Soil samples from the 0- to 20-cm horizon were collected after the third rotation crop, which was winter wheat harvested in 2015. It has been demonstrated that CUHW raised the soil total Cu content the highest, while the soil content of Zn was elevated the most by DPSS. The content of the remaining heavy metals (Pb, Ni, Cr, Mn, and Fe) increased as well, but to a lesser extent. The soil abundance of phytoavailable forms of copper improved even greater (from 75% when fertilized with CUGW or CSS, up to 124% when treated with CUHW). Soil content of soluble forms of such metals as Zn, Pb, Cr, Mn, and Fe changed less. The content of all analyzed heavy metals in soil (a form approximating the total content) was significantly positively correlated with the content of organic carbon (C-org.). This is the evidence for stronger adsorption of the above elements in soil richer in organic matter. On the other hand, the content of available forms of heavy metals depended more on the soil pH than on its content of C-org.


Subject(s)
Composting , Fertilizers , Metals, Heavy/analysis , Sewage/chemistry , Soil Pollutants/analysis , Soil/chemistry , Triticum/metabolism , Adsorption , Biological Availability , Carbon , Copper/analysis , Environmental Monitoring , Hydrogen-Ion Concentration , Manure , Nitrogen/administration & dosage , Poland , Zinc/analysis
7.
Water Air Soil Pollut ; 227(12): 456, 2016.
Article in English | MEDLINE | ID: mdl-27942079

ABSTRACT

The influence of manure and composts on the leaching of heavy metals from soil was evaluated in a model lysimeter experiment under controlled conditions. Soil samples were collected from experimental fields, from 0- to 90-cm layers retaining the layout of the soil profile layers, after the second crop rotation cycle with the following plant species: potatoes, spring barley, winter rapeseed, and winter wheat. During the field experiment, 20 t DM/ha of manure, municipal sewage sludge composted with straw (SSCS), composted sewage sludge (SSC), dried granular sewage sludge (DGSS), "Dano" compost made from non-segregated municipal waste (CMMW), and compost made from municipal green waste (CUGW) was applied, i.e., 10 t DM/ha per crop rotation cycle. The concentrations (µg/dm3) of heavy metals in the leachate were as follows: Cd (3.6-11.5) < Mn (4.8-15.4) < Cu (13.4-35.5) < Zn (27.5-48.0) < Cr (36.7-96.5) < Ni (24.4-165.8) < Pb (113.8-187.7). Soil fertilization with organic waste materials did not contaminate the percolating water with manganese or zinc, whereas the concentrations of the other metals increased to the levels characteristic of unsatisfactory water quality and poor water quality classes. The copper and nickel content of percolating water depended on the concentration of those metals introduced into the soil with organic waste materials. The concentrations of Cd in the leachate increased, whereas the concentrations of Cu and Ni decreased with increasing organic C content of organic fertilizers. The widening of the C/N ratio contributed to Mn leaching. The concentrations of Pb, Cr, and Mn in the percolating water were positively correlated with the organic C content of soil.

8.
Ecotoxicol Environ Saf ; 115: 19-25, 2015 May.
Article in English | MEDLINE | ID: mdl-25666733

ABSTRACT

The above-ground parts of celery plants were exposed to two polycyclic aromatic hydrocarbons (PAHs): 3-ring anthracene (ANT) and 5-ring benzo[k]fluoranthene (BkF), and the combination of ANT and BkF. After 43 days of exposure (overall dose of 1325µg/plant), celery plants retained only 1.4% of the total dose of ANT and 17.5% of the total dose of BkF. After exposure to a combination of ANT and BkF (1325µg of each compound per plant), the average ANT concentrations were more than twofold higher in/on leaf blades, whereas BkF levels were insignificantly higher. Under natural photoperiod conditions equivalent to a normal day, the combined application of ANT and BkF to the above-ground parts of celery plants slowed down physicochemical transformations of ANT. A similar effect was observed when PAHs were applied to glass surfaces. The combination of both PAHs probably led to stacking interactions, which decreased volatilization, in particular of ANT. Phytotoxicity of ANT and BkF could not be unambiguously established based on the results of this study. In all analyzed treatments, the chlorophyll content of leaf blades remained unchanged. Foliar application of ANT reduced ascorbic acid levels in all analyzed plant parts and increased the total acidity of celery leaves. In all experimental treatments, the total phenolic content of leaves increased up to 15%. Interestingly, ANT and BkF did not produce cumulative effects when applied in combination (when total PAH concentrations per plant were twofold higher).


Subject(s)
Anthracenes/toxicity , Apium/drug effects , Fluorenes/toxicity , Anthracenes/pharmacokinetics , Apium/metabolism , Fluorenes/pharmacokinetics , Plant Leaves/drug effects , Plant Leaves/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...