Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 22(4): e3002586, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38683852

ABSTRACT

Having two ears enables us to localize sound sources by exploiting interaural time differences (ITDs) in sound arrival. Principal neurons of the medial superior olive (MSO) are sensitive to ITD, and each MSO neuron responds optimally to a best ITD (bITD). In many cells, especially those tuned to low sound frequencies, these bITDs correspond to ITDs for which the contralateral ear leads, and are often larger than the ecologically relevant range, defined by the ratio of the interaural distance and the speed of sound. Using in vivo recordings in gerbils, we found that shortly after hearing onset the bITDs were even more contralaterally leading than found in adult gerbils, and travel latencies for contralateral sound-evoked activity clearly exceeded those for ipsilateral sounds. During the following weeks, both these latencies and their interaural difference decreased. A computational model indicated that spike timing-dependent plasticity can underlie this fine-tuning. Our results suggest that MSO neurons start out with a strong predisposition toward contralateral sounds due to their longer neural travel latencies, but that, especially in high-frequency neurons, this predisposition is subsequently mitigated by differential developmental fine-tuning of the travel latencies.


Subject(s)
Acoustic Stimulation , Gerbillinae , Neurons , Superior Olivary Complex , Animals , Neurons/physiology , Superior Olivary Complex/physiology , Sound Localization/physiology , Male , Olivary Nucleus/physiology , Sound , Female
2.
PLoS Comput Biol ; 17(10): e1009527, 2021 10.
Article in English | MEDLINE | ID: mdl-34699519

ABSTRACT

At synapses, the pre- and postsynaptic cells get so close that currents entering the cleft do not flow exclusively along its conductance, gcl. A prominent example is found in the calyx of Held synapse in the medial nucleus of the trapezoid body (MNTB), where the presynaptic action potential can be recorded in the postsynaptic cell in the form of a prespike. Here, we developed a theoretical framework for ephaptic coupling via the synaptic cleft, and we tested its predictions using the MNTB prespike recorded in voltage-clamp. The shape of the prespike is predicted to resemble either the first or the second derivative of the inverted presynaptic action potential if cleft currents dissipate either mostly capacitively or resistively, respectively. We found that the resistive dissipation scenario provided a better description of the prespike shape. Its size is predicted to scale with the fourth power of the radius of the synapse, explaining why intracellularly recorded prespikes are uncommon in the central nervous system. We show that presynaptic calcium currents also contribute to the prespike shape. This calcium prespike resembled the first derivative of the inverted calcium current, again as predicted by the resistive dissipation scenario. Using this calcium prespike, we obtained an estimate for gcl of ~1 µS. We demonstrate that, for a circular synapse geometry, such as in conventional boutons or the immature calyx of Held, gcl is scale-invariant and only defined by extracellular resistivity, which was ~75 Ωcm, and by cleft height. During development the calyx of Held develops fenestrations. We show that these fenestrations effectively minimize the cleft potentials generated by the adult action potential, which might otherwise interfere with calcium channel opening. We thus provide a quantitative account of the dissipation of currents by the synaptic cleft, which can be readily extrapolated to conventional, bouton-like synapses.


Subject(s)
Models, Neurological , Synapses/physiology , Trapezoid Body/physiology , Action Potentials/physiology , Animals , Calcium Channels/physiology , Computational Biology , Mice , Mice, Inbred C57BL , Presynaptic Terminals/physiology
3.
J Neurophysiol ; 126(1): 28-46, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34038184

ABSTRACT

The action potential of most vertebrate neurons initiates in the axon initial segment (AIS) and is then transmitted to the soma where it is regenerated by somatodendritic sodium channels. For successful transmission, the AIS must produce a strong axial current, so as to depolarize the soma to the threshold for somatic regeneration. Theoretically, this axial current depends on AIS geometry and Na+ conductance density. We measured the axial current of mouse retinal ganglion cells using whole cell recordings with post hoc AIS labeling. We found that this current is large, implying high Na+ conductance density, and carries a charge that covaries with capacitance so as to depolarize the soma by ∼30 mV. Additionally, we observed that the axial current attenuates strongly with depolarization, consistent with sodium channel inactivation, but temporally broadens so as to preserve the transmitted charge. Thus, the AIS appears to be organized so as to reliably backpropagate the axonal action potential.NEW & NOTEWORTHY We measured the axial current produced at spike initiation by the axon initial segment of mouse retinal ganglion cells. We found that it is a large current, requiring high sodium channel conductance density, which covaries with cell capacitance so as to ensure a ∼30 mV depolarization. During sustained depolarization the current attenuated, but it broadened to preserve somatic depolarization. Thus, properties of the initial segment are adjusted to ensure backpropagation of the axonal action potential.


Subject(s)
Action Potentials/physiology , Axons/physiology , Cell Body/physiology , Dendrites/physiology , Retinal Ganglion Cells/physiology , Animals , Animals, Newborn , Mice , Mice, Inbred C57BL , Sodium Channels/physiology
4.
Cell Rep ; 33(1): 108220, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33027659

ABSTRACT

Axonal arbors in many neuronal networks are exuberant early during development and become refined by activity-dependent competitive mechanisms. Theoretical work proposed non-competitive interactions between co-active axons to co-stabilize their connections, but the demonstration of such interactions is lacking. Here, we provide experimental evidence that reducing cyclic AMP (cAMP) signaling in a subset of retinal ganglion cells favors the elimination of thalamic projections from neighboring neurons, pointing to a cAMP-dependent interaction that promotes axon stabilization.


Subject(s)
Axons/metabolism , Cyclic AMP/metabolism , Neurons/metabolism , Humans , Signal Transduction
5.
J Physiol ; 598(20): 4603-4619, 2020 10.
Article in English | MEDLINE | ID: mdl-33439501

ABSTRACT

KEY POINTS: During development the giant, auditory calyx of Held forms a one-to-one connection with a principal neuron of the medial nucleus of the trapezoid body. While anatomical studies described that most of the target cells are temporarily contacted by multiple calyces, multi-calyceal innervation was only sporadically observed in in vivo recordings, suggesting a structure-function discrepancy. We correlated synaptic strength of inputs, identified in in vivo recordings, with post hoc labelling of the recorded neuron and synaptic terminals containing vesicular glutamate transporters (VGluT). During development only one input increased to the level of the calyx of Held synapse, and its strength correlated with the large VGluT cluster contacting the postsynaptic soma. As neither competing strong inputs nor multiple large VGluT clusters on a single cell were observed, our findings did not indicate a structure-function discrepancy. ABSTRACT: In adult rodents, a principal neuron in the medial nucleus of the trapezoid (MNTB) is generally contacted by a single, giant axosomatic terminal called the calyx of Held. How this one-on-one relation is established is still unknown, but anatomical evidence suggests that during development principal neurons are innervated by multiple calyces, which may indicate calyceal competition. However, in vivo electrophysiological recordings from principal neurons indicated that only a single strong synaptic connection forms per cell. To test whether a mismatch exists between synaptic strength and terminal size, we compared the strength of synaptic inputs with the morphology of the synaptic terminals. In vivo whole-cell recordings of the MNTB neurons from newborn Wistar rats of either sex were made while stimulating their afferent axons, allowing us to identify multiple inputs. The strength of the strongest input increased to calyceal levels in a few days across cells, while the strength of the second strongest input was stable. The recorded cells were subsequently immunolabelled for vesicular glutamate transporters (VGluT) to reveal axosomatic terminals with structured-illumination microscopy. Synaptic strength of the strongest input was correlated with the contact area of the largest VGluT cluster at the soma (r = 0.8), and no indication of a mismatch between structure and strength was observed. Together, our data agree with a developmental scheme in which one input strengthens and becomes the calyx of Held, but not with multi-calyceal competition.


Subject(s)
Brain Stem , Trapezoid Body , Animals , Auditory Pathways , Neurons , Rats , Rats, Wistar , Synapses
6.
Proc Natl Acad Sci U S A ; 114(16): 4249-4254, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28373550

ABSTRACT

The shape of the presynaptic action potential (AP) has a strong impact on neurotransmitter release. Because of the small size of most terminals in the central nervous system, little is known about the regulation of their AP shape during natural firing patterns in vivo. The calyx of Held is a giant axosomatic terminal in the auditory brainstem, whose biophysical properties have been well studied in slices. Here, we made whole-cell recordings from calyceal terminals in newborn rat pups. The calyx showed a characteristic burst firing pattern, which has previously been shown to originate from the cochlea. Surprisingly, even for frequencies over 200 Hz, the AP showed little or no depression. Current injections showed that the rate of rise of the AP depended strongly on its onset potential, and that the membrane potential after the AP (Vafter) was close to the value at which no depression would occur during high-frequency activity. Immunolabeling revealed that Nav1.6 is already present at the calyx shortly after its formation, which was in line with the fast recovery from AP depression that we observed in slice recordings. Our findings thus indicate that fast recovery from depression and an inter-AP membrane potential that minimizes changes on the next AP in vivo, together enable high timing precision of the calyx of Held already shortly after its formation.


Subject(s)
Axons/physiology , Brain Stem/physiology , Membrane Potentials/physiology , Presynaptic Terminals/physiology , Synaptic Transmission/physiology , Action Potentials , Animals , Animals, Newborn , Patch-Clamp Techniques , Rats , Rats, Wistar
7.
J Physiol ; 595(1): 207-231, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27426483

ABSTRACT

KEY POINTS: Neurons in the medial nucleus of the trapezoid body of anaesthetized rats of postnatal day (P)2-6 showed burst firing with a preferred interval of about 100 ms, which was stable, and a second preferred interval of 5-30 ms, which shortened during development. In 3 out of 132 cases, evidence for the presence of two large inputs was found. In vivo whole-cell recordings revealed that the excitability of the principal neuron and the size of its largest synaptic inputs were developmentally matched. At P2-4, action potentials were triggered by barrages of small synaptic events that summated to plateau potentials, while at later stages firing depended on a single, large and often prespike-associated input, which is probably the nascent calyx of Held. Simulations with a Hodgkin-Huxley-like model, which was based on fits of the intrinsic postsynaptic properties, suggested an essential role for the low-threshold potassium conductance in this transition. ABSTRACT: In the adult, principal neurons of the medial nucleus of the trapezoid body (MNTB) are typically contacted by a single, giant terminal called the calyx of Held, whereas during early development a principal neuron receives inputs from many axons. How these changes in innervation impact the postsynaptic activity has not yet been studied in vivo. We therefore recorded spontaneous inputs and intrinsic properties of principal neurons in anaesthetized rat pups during the developmental period in which the calyx forms. A characteristic bursting pattern could already be observed at postnatal day (P)2, before formation of the calyx. At this age, action potentials (APs) were triggered by barrages of summating EPSPs causing plateau depolarizations. In contrast, at P5, a single EPSP reliably triggered APs, resulting in a close match between pre- and postsynaptic firing. Postsynaptic excitability and the size of the largest synaptic events were developmentally matched. The developmental changes in intrinsic properties were estimated by fitting in vivo current injections to a Hodgkin-Huxley-type model of the principal neuron. Our simulations indicated that the developmental increases in Ih , low-threshold K+ channels and leak currents contributed to the reduction in postsynaptic excitability, but that low-threshold K+ channels specifically functioned as a dampening influence in the near-threshold range, thus precluding small inputs from triggering APs. Together, these coincident changes help to propagate bursting activity along the auditory brainstem, and are essential steps towards establishing the relay function of the calyx of Held synapse.


Subject(s)
Brain Stem/physiology , Synapses/physiology , Action Potentials , Animals , Animals, Newborn , Excitatory Postsynaptic Potentials , Female , Male , Models, Neurological , Neurons/physiology , Rats, Wistar
8.
Front Syst Neurosci ; 7: 75, 2013.
Article in English | MEDLINE | ID: mdl-24198768

ABSTRACT

Brain function and behavior undergo significant plasticity and refinement, particularly during specific critical and sensitive periods. In autistic and intellectual disability (ID) neurodevelopmental disorders (NDDs) and their corresponding genetic mouse models, impairments in many neuronal and behavioral phenotypes are temporally regulated and in some cases, transient. However, the links between neurobiological mechanisms governing typically normal brain and behavioral development (referred to also as "neurotypical" development) and timing of NDD impairments are not fully investigated. This perspective highlights temporal patterns of synaptic and neuronal impairment, with a restricted focus on autism and ID types of NDDs. Given the varying known genetic and environmental causes for NDDs, this perspective proposes two strategies for investigation: (1) a focus on neurobiological mechanisms underlying known critical periods in the (typically) normal-developing brain; (2) investigation of spatio-temporal expression profiles of genes implicated in monogenic syndromes throughout affected brain regions. This approach may help explain why many NDDs with differing genetic causes can result in overlapping phenotypes at similar developmental stages and better predict vulnerable periods within these disorders, with implications for both therapeutic rescue and ultimately, prevention.

SELECTION OF CITATIONS
SEARCH DETAIL
...