Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Biosci ; 11: 1250413, 2024.
Article in English | MEDLINE | ID: mdl-38803424

ABSTRACT

Nutrition during the perinatal period is an essential component of health and one that can severely impact the correct development of a human being and its overall condition, in all the subsequent stages of life. The availability of several compounds, mainly macronutrients and micronutrients, plays a key role in the balanced nutrition of both mother and baby and is a process with direct relation to the gut microbiome. Thus, we hereby refer to the set of small molecules derived from gut microbiome metabolism as the gut metabolome. These continuous processes occurring in the gut of a gestating or lactating mother related to microbial communities and nutrients, can be revealed by metabolomics. In this study, we explore for the first time the gut metabolome of pregnant and lactating women, from our region of Antioquia-Colombia, applying untargeted metabolomics by LC-QTOF-MS, and molecular networking. Regarding the gut metabolome composition of the cohort, we found, key metabolites that can be used as biomarkers of microbiome function, overall metabolic health, dietary intake, pharmacology, and lifestyle. In our cohort, pregnant women evidenced a significantly higher abundance of prostaglandins, alkaloids, corticosteroids, organosilicons, and natural toxins, while in lactating women, lipids stand out. Our results suggest that unveiling the metabolic phenotype of the gut microbiome of an individual, by untargeted metabolomics, allows a broad visualization of the chemical space present in this important niche and enables the recognition of influential indicators of the host's health status and habits, especially of women during this significant perinatal period. This study constitutes the first evidence of the use of untargeted LC-QTOF-MS coupled with molecular networking analysis, of the gut microbiome in a Colombian cohort and establishes a methodology for finding relative abundances of key metabolites, with potential use in nutritional and physiological state assessments, for future personalized health and nutrition practices.

2.
Front Mol Biosci ; 10: 1223863, 2023.
Article in English | MEDLINE | ID: mdl-37849822

ABSTRACT

In recent years, the popularity of fermented foods has strongly increased based on their proven health benefits and the adoption of new trends among consumers. One of these health-promoting products is water kefir, which is a fermented sugary beverage based on kefir grains (symbiotic colonies of yeast, lactic acid and acetic acid bacteria). According to previous knowledge and the uniqueness of each water kefir fermentation, the following project aimed to explore the microbial and chemical composition of a water kefir fermentation and its microbial consortium, through the integration of culture-dependent methods, compositional metagenomics, and untargeted metabolomics. These methods were applied in two types of samples: fermentation grains (inoculum) and fermentation samples collected at different time points. A strains culture collection of ∼90 strains was established by means of culture-dependent methods, mainly consisting of individuals of Pichia membranifaciens, Acetobacter orientalis, Lentilactobacillus hilgardii, Lacticaseibacillus paracasei, Acetobacter pomorum, Lentilactobacillus buchneri, Pichia kudriavzevii, Acetobacter pasteurianus, Schleiferilactobacillus harbinensis, and Kazachstania exigua, which can be further studied for their use in synthetic consortia formulation. In addition, metabarcoding of each fermentation time was done by 16S and ITS sequencing for bacteria and yeast, respectively. The results show strong population shifts of the microbial community during the fermentation time course, with an enrichment of microbial groups after 72 h of fermentation. Metataxonomics results revealed Lactobacillus and Acetobacter as the dominant genera for lactic acid and acetic acid bacteria, whereas, for yeast, P. membranifaciens was the dominant species. In addition, correlation and systematic analyses of microbial growth patterns and metabolite richness allowed the recognition of metabolic enrichment points between 72 and 96 h and correlation between microbial groups and metabolite abundance (e.g., Bile acid conjugates and Acetobacter tropicalis). Metabolomic analysis also evidenced the production of bioactive compounds in this fermented matrix, which have been associated with biological activities, including antimicrobial and antioxidant. Interestingly, the chemical family of Isoschaftosides (C-glycosyl flavonoids) was also found, representing an important finding since this compound, with hepatoprotective and anti-inflammatory activity, had not been previously reported in this matrix. We conclude that the integration of microbial biodiversity, cultured species, and chemical data enables the identification of relevant microbial population patterns and the detection of specific points of enrichment during the fermentation process of a food matrix, which enables the future design of synthetic microbial consortia, which can be used as targeted probiotics for digestive and metabolic health.

3.
Sci Rep ; 10(1): 5563, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32221330

ABSTRACT

The world is in the midst of an antimicrobial resistance crisis, driving a need to discover novel antibiotic substances. Using chemical cues as inducers to unveil a microorganism's full metabolic potential is considered a successful strategy. To this end, we investigated an inducible antagonistic behavior in multiple isolates of the order Bacillales, where large inhibition zones were produced against Ralstonia solanacearum only when grown in the presence of the indicator triphenyl tetrazolium chloride (TTC). This bioactivity was produced in a TTC-dose dependent manner. Escherichia coli and Staphylococcus sp. isolates were also inhibited by Bacillus sp. strains in TTC presence, to a lesser extent. Knockout mutants and transcriptomic analysis of B. subtilis NCIB 3610 cells revealed that genes from the L-histidine biosynthetic pathway, the purine, pyrimidine de novo synthesis and salvage and interconversion routes, were significantly upregulated. Chemical space studied through metabolomic analysis, showed increased presence of nitrogenous compounds in extracts from induced bacteria. The metabolites orotic acid and L-phenylalaninamide were tested against R. solanacearum, E. coli, Staphylococcus sp. and B. subtilis, and exhibited activity against pathogens only in the presence of TTC, suggesting a biotransformation of nitrogenous compounds in Bacillus sp. cells as the plausible cause of the inducible antagonistic behavior.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacillales/metabolism , Bacteria/drug effects , Tetrazolium Salts/pharmacology , Biosynthetic Pathways/drug effects , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...