Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 80(2): 433-441, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37721042

ABSTRACT

BACKGROUND: Pyrethroids are synthetic insecticides with low mammalian toxicity and broad-spectrum activity across insects. One major challenge with pyrethroids is their perceived repellency. This perception can influence decisions made by pest control operators, especially when insecticides are used to reduce insect entry into or movement within structures. One major indoor pest that has been repeatedly shown to be repelled by some pyrethroids is the German cockroach, Blattella germanica. However, most experiments evaluating pyrethroid repellency in the German cockroach have used end-point assays, which do not provide information on the movement that led to the final position. Therefore, we evaluated the kinetic behavioral response of field-collected German cockroaches to five pyrethroid-based products and their active ingredients (A.I.) in open behavioral arenas using advanced video tracking software. In addition, in an effort to compare our free-moving experiments with end-point assays, we evaluated sheltering behavior using two-choice harborage arrestment assays where German cockroaches were provided a choice between pyrethroid-treated and untreated shelters. RESULTS: All pyrethroid-formulated products and their respective A.I.'s failed to affect field-collected German cockroach movement behavior in free-moving assays, while positive controls (DEET, corn mint oil) resulted in reduced time spent by German cockroaches in treated areas. However, despite their willingness to move over pyrethroids-treated surfaces, field-collected German cockroaches displayed a reduced propensity to arrest on pyrethroids treated tents. CONCLUSION: While most pyrethroids/pyrethroid-formulated products affected German cockroach arrestment, pyrethroids and pyrethroid-formulated products failed to change German cockroach movement behavior in free-moving assays. These results indicate the pyrethroids tested act as contact irritants rather than true-spatial repellents on field-collected German cockroaches. This distinction is critical to refining pest management strategies involving pyrethroids. © 2023 Society of Chemical Industry.


Subject(s)
Blattellidae , Cockroaches , Insect Repellents , Insecticides , Pyrethrins , Animals , Pyrethrins/pharmacology , Insecticides/pharmacology , Insecticide Resistance , Insect Repellents/pharmacology , Mammals
2.
J Med Entomol ; 58(4): 1798-1807, 2021 07 16.
Article in English | MEDLINE | ID: mdl-33822102

ABSTRACT

Cimex lectularius L. populations have been documented worldwide to be resistant to pyrethroids and neonicotinoids, insecticides that have been widely used to control bed bugs. There is an urgent need to discover new active ingredients with different modes of action to control bed bug populations. Fipronil, a phenylpyrazole that targets the GABA receptor, has been shown to be highly effective on bed bugs. However, because fipronil shares the same target site with dieldrin, we investigated the potential of fipronil resistance in bed bugs. Resistance ratios in eight North American populations and one European population ranged from 1.4- to >985-fold, with highly resistant populations on both continents. We evaluated metabolic resistance mechanisms mediated by cytochrome P450s, esterases, carboxylesterases, and glutathione S-transferases using synergists and a combination of synergists. All four detoxification enzyme classes play significant but variable roles in bed bug resistance to fipronil. Suppression of P450s and esterases with synergists eliminated resistance to fipronil in highly resistant bed bugs. Target-site insensitivity was evaluated by sequencing a fragment of the Rdl gene to detect the A302S mutation, known to confer resistance to dieldrin and fipronil in other species. All nine populations were homozygous for the wild-type genotype (susceptible phenotype). Highly resistant populations were also highly resistant to deltamethrin, suggesting that metabolic enzymes that are responsible for pyrethroid detoxification might also metabolize fipronil. It is imperative to understand the origins of fipronil resistance in the development or adoption of new active ingredients and implementation of integrated pest management programs.


Subject(s)
Bedbugs , Insecticide Resistance/genetics , Pyrazoles/pharmacology , Receptors, GABA-A/genetics , Animals , Bedbugs/drug effects , Bedbugs/genetics , Insect Proteins/genetics , Insecticides/pharmacology , Mutation , Pyrethrins/pharmacology
3.
J Med Entomol ; 57(4): 1199-1206, 2020 07 04.
Article in English | MEDLINE | ID: mdl-32100017

ABSTRACT

In the last two decades, bed bugs (Cimex lectularius L. and Cimex hemipterus F.) have become perennial and difficult to control indoor pests. Current pest control options are severely constrained by high prevalence of insecticide resistance and availability and relatively high costs of alternative interventions. Among various measures to counter the drawbacks of insecticide resistance include efforts to diversify the modes of action of insecticides with residual applications of combinations of insecticides, which include a juvenile hormone analog (JHA). JHAs, such as hydroprene and methoprene, have a desirable safety profile and are effective against a variety of indoor pests. We evaluated the potential of hydroprene and methoprene to be incorporated into an ingestible bait, with dose-response studies on fifth-instar male and female bed bugs. Females were more susceptible than males to both JHAs, and methoprene was more effective by ingestion than hydroprene at inducing both lethal and sublethal effects. Ingestion of ≥10 µg/ml blood of either JHA by last instar nymphs reduced oviposition; untreated females that mated with males exposed to high concentrations of either JHA also exhibited lower oviposition. We suggest that methoprene could be incorporated into integrated pest management programs in liquid baits and residual sprays in combination with other active ingredients.


Subject(s)
Bedbugs , Fatty Acids, Unsaturated , Insect Control , Juvenile Hormones , Methoprene , Animals , Fertility/drug effects
4.
J Econ Entomol ; 111(6): 2772-2781, 2018 12 14.
Article in English | MEDLINE | ID: mdl-30192952

ABSTRACT

Boric acid has been used as an insecticide in the successful control of agricultural, public health and urban pests long before the advent of synthetic organic pesticides. Boric acid products, formulated as dusts, sprays, granular baits, pastes, gels, and liquids, are widely available to consumers and pest management professionals, especially to control pest infestations within homes. Boric acid dust is commonly used against bed bugs (Cimex lectularius L. [Hemiptera: Cimicidae]), but its efficacy has not been demonstrated. We evaluated the efficacy of boric acid as an ingestible and residual contact insecticide on bed bugs, and compared its efficacy on the German cockroach (Blattella germanica L. [Blattodea: Ectobiidae]) which is known to be susceptible to boric acid by both routes. Dose-response studies of 0-5% boric acid in blood demonstrated that ingested boric acid caused rapid mortality at concentrations of ≥2%, and even 0.5% and 1% boric acid caused 100% mortality, albeit at a slower time course. In contrast, bed bugs survived contact with high concentrations of boric acid dust. Smaller boric acid particles did not increase mortality of either unfed or recently fed bed bugs. The same boric acid products were effective at causing mortality of German cockroaches by both contact and ingestion. We thus conclude that although boric acid is an excellent candidate active ingredient for an ingestible bait formulation, residual applications of dust or spray would be ineffective in bed bug interventions.


Subject(s)
Bedbugs , Boric Acids/administration & dosage , Insecticides/administration & dosage , Animals , Blattellidae , Eating , Toxicity Tests
5.
J Econ Entomol ; 110(3): 1218-1225, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28334348

ABSTRACT

Baits are a preferred method of urban pest management. Baits enable more targeted insecticide applications with a fraction of the active ingredient used in residual sprays. Bait translocation by foragers, and consequent secondary kill of nonforagers, enhances bait effectiveness in social insects, and in other group-living species like German cockroaches (Blattella germanica L.). We investigated the potential for secondary kill in bed bugs (Cimex lectularius L.), another gregarious species, using a liquid bait. We first investigated whether blood-fed adults enhance nymph survivorship within aggregations by increasing the local relative humidity (RH) and providing fecal nutrients. Higher RH (50% and 95%) resulted in greater survivorship of first instars compared with 0% RH. Therefore, in subsequent experiments, we controlled RH to decouple its effect on nymph survivorship from effects of fecal nutrients. The presence of fed or unfed adults did not increase unfed first instar survivorship, suggesting that if nymphs ingested feces, its nutritional benefits were minimal. Nymph survivorship was unaffected by the presence of adult males fed fipronil or clothianidin, suggesting that unlike in cockroaches, highly effective insecticides might not be effective as secondary kill toxicants in bed bugs. To directly compare secondary kill in first-instar bed bugs and B. germanica, we exposed both to insecticide-laden adult B. germanica feces. Whereas first-instar B. germanica died in the presence of insecticide-laden feces, bed bugs did not. We, therefore, conclude that secondary kill with neuroactive insecticides will likely not be a significant factor in bed bug population suppression.


Subject(s)
Bedbugs/drug effects , Insect Control/methods , Insecticides/pharmacology , Animal Nutritional Physiological Phenomena , Animals , Bedbugs/growth & development , Bedbugs/physiology , Feces/chemistry , Feeding Behavior , Humidity , Longevity/drug effects , Male , Nymph/drug effects , Nymph/growth & development , Nymph/physiology
6.
Pest Manag Sci ; 73(3): 521-527, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27766740

ABSTRACT

BACKGROUND: The global prevalence of Cimex lectularius infestations has challenged current intervention efforts, as pyrethroid resistance has become ubiquitous, availability of labeled insecticides for bed bugs is limited, and non-chemical treatment options, such as heat, are often unaffordable. We evaluated representative insecticides toward the goal of developing a novel, ingestible liquid bait for hematophagous arthropods. RESULTS: LC50 values were estimated for adult males and first instar nymphs of an insecticide-susceptible strain for abamectin, clothianidin, fipronil and indoxacarb, after ingestion from an artificial feeder. LD50 values were calculated based on the ingested blood volume. Ingested abamectin, clothianidin and fipronil caused rapid mortality in both life stages. Fipronil was ∼43-fold more effective by ingestion than by topical application. Indoxacarb and its bioactive metabolite decarbomethoxylated JW062 (DCJW) were ineffective at causing bed bug mortality even at concentrations as high as 1000 ng mL-1 blood. CONCLUSIONS: Fipronil, clothianidin and abamectin have potential for being incorporated into a liquid bait for bed bug control; indoxacarb and DCJW were not effective. Bed bugs are a good candidate for an ingestible liquid bait because systemic formulations generally require less active ingredient than residual sprays, they remain contained and more effectively target hematophagous arthropods. © 2016 Society of Chemical Industry.


Subject(s)
Bedbugs , Ectoparasitic Infestations/prevention & control , Insect Control/methods , Insecticides , Animals , Bedbugs/growth & development , Guanidines , Ivermectin/analogs & derivatives , Male , Neonicotinoids , Nymph , Oxazines , Pyrazoles , Thiazoles
SELECTION OF CITATIONS
SEARCH DETAIL
...