Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Synth Biol ; 13(2): 474-484, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38206581

ABSTRACT

Directed evolution provides a powerful route for in vitro enzyme engineering. State-of-the-art techniques functionally screen up to millions of enzyme variants using high throughput microfluidic sorters, whose operation remains technically challenging. Alternatively, in vitro self-selection methods, analogous to in vivo complementation strategies, open the way to even higher throughputs, but have been demonstrated only for a few specific activities. Here, we leverage synthetic molecular networks to generalize in vitro compartmentalized self-selection processes. We introduce a programmable circuit architecture that can link an arbitrary target enzymatic activity to the replication of its encoding gene. Microencapsulation of a bacterial expression library with this autonomous selection circuit results in the single-step and screening-free enrichment of genetic sequences coding for programmed enzymatic phenotypes. We demonstrate the potential of this approach for the nicking enzyme Nt.BstNBI (NBI). We applied autonomous selection conditions to enrich for thermostability or catalytic efficiency, manipulating up to 107 microcompartments and 5 × 105 variants at once. Full gene reads of the libraries using nanopore sequencing revealed detailed mutational activity landscapes, suggesting a key role of electrostatic interactions with DNA in the enzyme's turnover. The most beneficial mutations, identified after a single round of self-selection, provided variants with, respectively, 20 times and 3 °C increased activity and thermostability. Based on a modular molecular programming architecture, this approach does not require complex instrumentation and can be repurposed for other enzymes, including those that are not related to DNA chemistry.


Subject(s)
DNA , Microfluidics , DNA/genetics , Mutation , Catalysis , Directed Molecular Evolution/methods
2.
Adv Biochem Eng Biotechnol ; 185: 91-127, 2023.
Article in English | MEDLINE | ID: mdl-37306704

ABSTRACT

The use of cell-free production systems in droplet microfluidic devices has gained significant interest during the last decade. Encapsulating DNA replication, RNA transcription, and protein expression systems in water-in-oil drops allows for the interrogation of unique molecules and high-throughput screening of libraries of industrial and biomedical interest. Furthermore, the use of such systems in closed compartments enables the evaluation of various properties of novel synthetic or minimal cells. In this chapter, we review the latest advances in the usage of the cell-free macromolecule production toolbox in droplets, with a special emphasis on new on-chip technologies for the amplification, transcription, expression, screening, and directed evolution of biomolecules.


Subject(s)
High-Throughput Screening Assays , Microfluidics , Lab-On-A-Chip Devices
3.
Nat Protoc ; 12(9): 1912-1932, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28837132

ABSTRACT

Biochemical systems in which multiple components take part in a given reaction are of increasing interest. Because the interactions between these different components are complex and difficult to predict from basic reaction kinetics, it is important to test for the effect of variations in the concentration for each reagent in a combinatorial manner. For example, in PCR, an increase in the concentration of primers initially increases template amplification, but large amounts of primers result in primer-dimer by-products that inhibit the amplification of the template. Manual titration of biochemical mixtures rapidly becomes costly and laborious, forcing scientists to settle for suboptimal concentrations. Here we present a droplet-based microfluidics platform for mapping of the concentration space of up to three reaction components followed by detection with a fluorescent readout. The concentration of each reaction component is read through its internal standard (barcode), which is fluorescent but chemically orthogonal. We describe in detail the workflow, which comprises the following: (i) production of the microfluidics chips, (ii) preparation of the biochemical mixes, (iii) their mixing and compartmentalization into water-in-oil emulsion droplets via microfluidics, (iv) incubation and imaging of the fluorescent barcode and reporter signals by fluorescence microscopy and (v) image processing and data analysis. We also provide recommendations for choosing the appropriate fluorescent markers, programming the pressure profiles and analyzing the generated data. Overall, this platform allows a researcher with a few weeks of training to acquire ∼10,000 data points (in a 1D, 2D or 3D concentration space) over the course of a day from as little as 100-1,000 µl of reaction mix.


Subject(s)
Biological Assay/instrumentation , Biological Assay/methods , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Titrimetry/instrumentation , Titrimetry/methods , Equipment Design , Fluorescent Dyes/analysis , Fluorescent Dyes/chemistry , Image Processing, Computer-Assisted/methods , Surface-Active Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...