Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 187(4): 1722-32, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21765018

ABSTRACT

Although CMV infection is largely benign in immunocompetent people, the specific T cell responses associated with control of this persistent virus are enormous and must be maintained for life. These responses may increase with advanced age and have been linked to an "immune risk profile" that is associated with poor immune responsiveness and increased mortality in aged individuals. Based on this association, it has been suggested that CMV-specific T cell responses might become dysfunctional with age and thereby contribute to the development of immune senescence by homeostatic disruption of other T cell populations, diminished control of CMV replication, and/or excess chronic inflammation. In this study, we use the rhesus macaque (RM) model of aging to ask whether the quantity and quality of CMV-specific T cell responses differ between healthy adult RMs and elderly RMs that manifest hallmarks of immune aging. We demonstrate that the size of the CD4(+) and CD8(+) CMV-specific T cell pools are similar in adult versus old RMs and show essentially identical phenotypic and functional characteristics, including a dominant effector memory phenotype, identical patterns of IFN-γ, TNF-α, and IL-2 production and cytotoxic degranulation, and comparable functional avidities of optimal epitope-specific CD8(+) T cells. Most importantly, the response to and protection against an in vivo CMV challenge were identical in adult and aged RMs. These data indicate that CMV-specific T cell immunity is well maintained in old RMs and argue against a primary role for progressive dysfunction of these responses in the development of immune senescence.


Subject(s)
Aging/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus/immunology , Immunity, Cellular , Animals , Cytokines/immunology , Epitopes, T-Lymphocyte/immunology , Macaca mulatta
2.
Nat Med ; 15(3): 293-9, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19219024

ABSTRACT

The rapid onset of massive, systemic viral replication during primary HIV or simian immunodeficiency virus (SIV) infection and the immune evasion capabilities of these viruses pose fundamental problems for vaccines that depend upon initial viral replication to stimulate effector T cell expansion and differentiation. We hypothesized that vaccines designed to maintain differentiated effector memory T cell (TEM cell) responses at viral entry sites might improve efficacy by impairing viral replication at its earliest stage, and we have therefore developed SIV protein-encoding vectors based on rhesus cytomegalovirus (RhCMV), the prototypical inducer of life-long TEM cell responses. RhCMV vectors expressing SIV Gag, Rev-Tat-Nef and Env persistently infected rhesus macaques, regardless of preexisting RhCMV immunity, and primed and maintained robust, SIV-specific CD4+ and CD8+ TEM cell responses (characterized by coordinate tumor necrosis factor, interferon-gamma and macrophage inflammatory protein-1beta expression, cytotoxic degranulation and accumulation at extralymphoid sites) in the absence of neutralizing antibodies. Compared to control rhesus macaques, these vaccinated rhesus macaques showed increased resistance to acquisition of progressive SIVmac239 infection upon repeated limiting-dose intrarectal challenge, including four macaques who controlled rectal mucosal infection without progressive systemic dissemination. These data suggest a new paradigm for AIDS vaccine development--vaccines capable of generating and maintaining HIV-specific TEM cells might decrease the incidence of HIV acquisition after sexual exposure.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immunity, Mucosal , Immunologic Memory , Simian Immunodeficiency Virus/immunology , Animals , Humans , Macaca mulatta , Male , Viral Vaccines/immunology
3.
J Exp Med ; 200(10): 1299-314, 2004 Nov 15.
Article in English | MEDLINE | ID: mdl-15545355

ABSTRACT

The mechanisms linking human immunodeficiency virus replication to the progressive immunodeficiency of acquired immune deficiency syndrome are controversial, particularly the relative contribution of CD4+ T cell destruction. Here, we used the simian immunodeficiency virus (SIV) model to investigate the relationship between systemic CD4+ T cell dynamics and rapid disease progression. Of 18 rhesus macaques (RMs) infected with CCR5-tropic SIVmac239 (n=14) or CXCR4-tropic SIVmac155T3 (n=4), 4 of the former group manifested end-stage SIV disease by 200 d after infection. In SIVmac155T3 infections, naive CD4+ T cells were dramatically depleted, but this population was spared by SIVmac239, even in rapid progressors. In contrast, all SIVmac239-infected RMs demonstrated substantial systemic depletion of CD4+ memory T cells by day 28 after infection. Surprisingly, the extent of CD4+ memory T cell depletion was not, by itself, a strong predictor of rapid progression. However, in all RMs destined for stable infection, this depletion was countered by a striking increase in production of short-lived CD4+ memory T cells, many of which rapidly migrated to tissue. In all rapid progressors (P <0.0001), production of these cells initiated but failed by day 42 of infection, and tissue delivery of new CD4+ memory T cells ceased. Thus, although profound depletion of tissue CD4+ memory T cells appeared to be a prerequisite for early pathogenesis, it was the inability to respond to this depletion with sustained production of tissue-homing CD4+ memory T cells that best distinguished rapid progressors, suggesting that mechanisms of the CD4+ memory T cell generation play a crucial role in maintaining immune homeostasis in stable SIV infection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Immunologic Memory , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/physiopathology , Simian Immunodeficiency Virus/pathogenicity , Analysis of Variance , Animals , Bromodeoxyuridine , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/metabolism , Disease Progression , Flow Cytometry , Fluorescent Antibody Technique , Macaca mulatta , Male , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...