Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sustain Chem Eng ; 11(44): 15876-15886, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37969886

ABSTRACT

Reducing the energy intensity of the mechanical refining-based pretreatment process for producing lignocellulosic-derived sugars without significantly affecting enzymatic hydrolysis sugar yields is challenging. This work investigated the impact of different refining conditions on energy consumption, enzymatic sugar yields, minimum sugar selling price, and environmental impacts for the conversion of corn stover to sugars. A positive proportionate correlation between specific energy consumption and enzymatic sugar yields was observed when changing the refiner plate gap was changed, which agrees with other reported works. However, the correlation between specific energy consumption and enzymatic sugar yields is not straightforward when the rotational speed and refiner plate design change. We observed that, for a corn stover material with low consistency disc refining, specific energy consumption decreased by >50% by decreasing the rotation speed without affecting enzymatic sugar yields. By changing refiner plate designs, a 45% reduction in specific energy consumption could be achieved without affecting the glucose yield, albeit still with a detrimental impact on the xylose yield. Our high-fidelity disc refining model was able to predict the energy consumption for different refiner plate geometry designs and operating conditions. Techno-economic and life-cycle analyses indicate that the plate design and operating conditions have a direct impact on overall process power consumption and sugar yields, with sugar yields strongly dictating the minimum sugar selling price, the life cycle greenhouse gas emissions, and fossil energy consumption. To minimize the environmental impact and maximize process economics, optimization of the mechanical refining process should target maintaining high sugar yields, while lowering refining energy consumption.

2.
Bioresour Technol ; 243: 474-480, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28689140

ABSTRACT

The reaction conditions used during dilute-acid pretreatment of lignocellulosic biomass control the carbohydrate digestion yield and also hydrolyzate properties. Depending on the conversion route of interest, solid-liquid separation (SLS) may be required to split the hemicellulose-rich liquor from the cellulose-rich insoluble solids, and slurry properties are important for SLS. Corn stover was pretreated at different reaction conditions and the slurries were assessed for conversion yield and filtration performance. Increasing pretreatment temperature reduced the solids mean particle size and resulted in slower slurry filtration rates when vacuum filtered or pressure filtered. Corn stover pretreated at 165°C for 10min and with 1% H2SO4 exhibited the highest xylose yield and best filtration performance with a no-wash filtration rate of 80kg/hm2 and cake permeability of 15x10-15.


Subject(s)
Carbohydrates , Zea mays , Filtration , Hydrolysis , Sulfuric Acids , Xylose
3.
Bioresour Technol ; 187: 37-42, 2015.
Article in English | MEDLINE | ID: mdl-25836372

ABSTRACT

Solid-liquid separation of intermediate process slurries is required in some process configurations for the conversion of lignocellulosic biomass to transportation fuels. Thermochemically pretreated and enzymatically hydrolyzed corn stover slurries have proven difficult to filter due to formation of very low permeability cakes that are rich in lignin. Treatment of two different slurries with polyelectrolyte flocculant was demonstrated to increase mean particle size and filterability. Filtration flux was greatly improved, and thus scaled filter unit capacity was increased approximately 40-fold compared with unflocculated slurry. Although additional costs were accrued using polyelectrolyte, techno-economic analysis revealed that the increase in filter capacity significantly reduced overall production costs. Fuel production cost at 95% sugar recovery was reduced by $1.35 US per gallon gasoline equivalent for dilute-acid pretreated and enzymatically hydrolyzed slurries and $3.40 for slurries produced using an additional alkaline de-acetylation preprocessing step that is even more difficult to natively filter.


Subject(s)
Carbohydrates/economics , Carbohydrates/isolation & purification , Hydrolases/chemistry , Sewage/chemistry , Solid Phase Extraction/methods , Zea mays/chemistry , Computer Simulation , Hydrolases/economics , Hydrolysis , Models, Economic , Plant Components, Aerial/chemistry , United States
4.
Bioresour Technol ; 167: 291-6, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24995879

ABSTRACT

Solid-liquid separation of pretreated lignocellulosic biomass slurries is a critical unit operation employed in several different processes for production of fuels and chemicals. An effective separation process achieves good recovery of solute (sugars) and efficient dewatering of the biomass slurry. Dilute acid pretreated corn stover slurries were subjected to pressure and vacuum filtration and basket centrifugation to evaluate the technical and economic merits of these technologies. Experimental performance results were used to perform detailed process simulations and economic analysis using a 2000 tonne/day biorefinery model to determine differences between the various filtration methods and their process settings. The filtration processes were able to successfully separate pretreated slurries into liquor and solid fractions with estimated sugar recoveries of at least 95% using a cake washing process. A continuous vacuum belt filter produced the most favorable process economics.


Subject(s)
Biotechnology/economics , Biotechnology/methods , Sulfuric Acids/pharmacology , Waste Products , Zea mays/drug effects , Computer Simulation , Electricity , Ethanol/economics , Filtration , Pressure , Xylose/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...