Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(31): e202304533, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37249408

ABSTRACT

The development of novel anti-infectives requires unprecedented strategies targeting pathways which are solely present in pathogens but absent in humans. Following this principle, we developed inhibitors of lipoic acid (LA) salvage, a crucial pathway for the survival of LA auxotrophic bacteria and parasites but non-essential in human cells. An LA-based probe was selectively transferred onto substrate proteins via lipoate protein ligase (LPL) in intact cells, and their binding sites were determined by mass spectrometry. Probe labeling served as a proxy of LPL activity, enabling in situ screenings for cell-permeable LPL inhibitors. Profiling a focused compound library revealed two substrate analogs (LAMe and C3) as inhibitors, which were further validated by binding studies and co-crystallography. Importantly, LAMe exhibited low toxicity in human cells and achieved killing of Plasmodium falciparum in erythrocytes with an EC50 value of 15 µM, making it the most effective LPL inhibitor reported to date.


Subject(s)
Parasites , Animals , Humans , Proteomics , Plasmodium falciparum , Bacteria , Erythrocytes
2.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Article in English | MEDLINE | ID: mdl-34117124

ABSTRACT

Environmental fluctuations are a common challenge for single-celled organisms; enteric bacteria such as Escherichia coli experience dramatic changes in nutrient availability, pH, and temperature during their journey into and out of the host. While the effects of altered nutrient availability on gene expression and protein synthesis are well known, their impacts on cytoplasmic dynamics and cell morphology have been largely overlooked. Here, we discover that depletion of utilizable nutrients results in shrinkage of E. coli's inner membrane from the cell wall. Shrinkage was accompanied by an ∼17% reduction in cytoplasmic volume and a concurrent increase in periplasmic volume. Inner membrane retraction after sudden starvation occurred almost exclusively at the new cell pole. This phenomenon was distinct from turgor-mediated plasmolysis and independent of new transcription, translation, or canonical starvation-sensing pathways. Cytoplasmic dry-mass density increased during shrinkage, suggesting that it is driven primarily by loss of water. Shrinkage was reversible: upon a shift to nutrient-rich medium, expansion started almost immediately at a rate dependent on carbon source quality. A robust entry into and recovery from shrinkage required the Tol-Pal system, highlighting the importance of envelope coupling during shrinkage and recovery. Klebsiella pneumoniae also exhibited shrinkage when shifted to carbon-free conditions, suggesting a conserved phenomenon. These findings demonstrate that even when Gram-negative bacterial growth is arrested, cell morphology and physiology are still dynamic.


Subject(s)
Cytoplasm/physiology , Escherichia coli/physiology , Carbon/deficiency , Carbon/pharmacology , Cytoplasm/drug effects , DNA Replication/drug effects , Down-Regulation/drug effects , Escherichia coli/drug effects , Escherichia coli/growth & development , Escherichia coli Proteins/metabolism , Ion Channels/metabolism , Mechanotransduction, Cellular/drug effects , Nitrogen/analysis , Phosphorus/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...