Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 14655, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918485

ABSTRACT

Osteocytes locally remodel their surrounding tissue through perilacunar canalicular remodeling (PLR). During lactation, osteocytes remove minerals to satisfy the metabolic demand, resulting in increased lacunar volume, quantifiable with synchrotron X-ray radiation micro-tomography (SRµCT). Although the effects of lactation on PLR are well-studied, it remains unclear whether PLR occurs uniformly throughout the bone and what mechanisms prevent PLR from undermining bone quality. We used SRµCT imaging to conduct an in-depth spatial analysis of the impact of lactation and osteocyte-intrinsic MMP13 deletion on PLR in murine bone. We found larger lacunae undergoing PLR are located near canals in the mid-cortex or endosteum. We show lactation-induced hypomineralization occurs 14 µm away from lacunar edges, past a hypermineralized barrier. Our findings reveal that osteocyte-intrinsic MMP13 is crucial for lactation-induced PLR near lacunae in the mid-cortex but not for whole-bone resorption. This research highlights the spatial control of PLR on mineral distribution during lactation.


Subject(s)
Bone Remodeling , Lactation , Osteocytes , X-Ray Microtomography , Animals , Lactation/physiology , Female , Osteocytes/metabolism , Osteocytes/physiology , Mice , Bone Remodeling/physiology , Matrix Metalloproteinase 13/metabolism
2.
Tissue Cell ; 83: 102126, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37295271

ABSTRACT

Acute and chronic wounds involving deeper layers of the skin are often not adequately healed by dressings alone and require therapies such as skin grafting, skin substitutes, or growth factors. Here we report the development of an autologous heterogeneous skin construct (AHSC) that aids wound closure. AHSC is manufactured from a piece of healthy full-thickness skin. The manufacturing process creates multicellular segments, which contain endogenous skin cell populations present within hair follicles. These segments are physically optimized for engraftment within the wound bed. The ability of AHSC to facilitate closure of full thickness wounds of the skin was evaluated in a swine model and clinically in 4 patients with wounds of different etiologies. Transcriptional analysis demonstrated high concordance of gene expression between AHSC and native tissues for extracellular matrix and stem cell gene expression panels. Swine wounds demonstrated complete wound epithelialization and mature stable skin by 4 months, with hair follicle development in AHSC-treated wounds evident by 15 weeks. Biomechanical, histomorphological, and compositional analysis of the resultant swine and human skin wound biopsies demonstrated the presence of epidermal and dermal architecture with follicular and glandular structures that are similar to native skin. These data suggest that treatment with AHSC can facilitate wound closure.


Subject(s)
Skin , Wound Healing , Swine , Humans , Animals , Wound Healing/genetics , Skin/pathology , Epidermis/pathology , Skin Transplantation , Hair Follicle
3.
Skin Res Technol ; 27(4): 501-510, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33216396

ABSTRACT

BACKGROUND: Swine dorsum is commonly utilized as a model for studying skin wounds and assessment of dermatological and cosmetic medicaments. The human abdomen is a common location for dermatological intervention. OBJECTIVE: This study provides a correlation between spectral, mechanical, and structural characterization techniques, utilized for evaluating human abdominal skin and swine dorsum. METHODS: Raman spectroscopy (RS), tensile testing, ballistometry, AFM, SEM, and MPM were utilized to characterize and compare full-thickness skin properties in swine and human model. RESULTS: RS of both species' skin types revealed a similar assignment of vibrations in the fingerprint and the high wavenumber spectral regions. Structural imaging and mechanical characterization using ballistometry and tensile testing displayed differences in the inherent functional properties of human and swine skin. These differences correlated with variations in the Raman peak ratios, collagen intensity measured using SEM and MPM and collagen density measured using AFM. CONCLUSION: A comprehensive evaluation of swine skin as a suitable substitute for human skin for mechanical and structural comparisons was performed. This data should be considered for better understanding the swine skin model for cutaneous drug delivery and wound applications. Additionally, correlation between RS, tensile testing, AFM, SEM, and MPM was performed as skin characterization tools.


Subject(s)
Collagen , Skin , Spectrum Analysis, Raman , Animals , Drug Delivery Systems , Humans , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Swine
4.
Appl Spectrosc ; 71(6): 1249-1255, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27888200

ABSTRACT

Raman spectroscopy has been used for decades to detect and identify biological substances as it provides specific molecular information. Spectra collected from biological samples are often complex, requiring the aid of data truncation techniques such as principal component analysis (PCA) and multivariate classification methods. Classification results depend on the proper selection of principal components (PCs) and how PCA is performed (scaling and/or centering). There are also guidelines for choosing the optimal number of PCs such as a scree plot, Kaiser criterion, or cumulative percent variance. The goal of this research is to evaluate these methods for best implementation of PCA and PC selection to classify Raman spectra of bacteria. Raman spectra of three different isolates of mycobacteria ( Mycobacterium sp. JLS, Mycobacterium sp. KMS, Mycobacterium sp. MCS) were collected and then passed through PCA and linear discriminant analysis for classification. Principal component analysis implementation as well as PC selection was evaluated by comparing the highest possible classification accuracies against accuracies determined by PC selection methods for each centering and scaling option. Centered and unscaled data provided the best results when selecting PCs based on cumulative percent variance.


Subject(s)
Mycobacterium/chemistry , Mycobacterium/classification , Principal Component Analysis/methods , Spectrum Analysis, Raman/methods , Discriminant Analysis , Image Processing, Computer-Assisted
5.
J Vis Exp ; (117)2016 11 10.
Article in English | MEDLINE | ID: mdl-27911413

ABSTRACT

Immunoassays are used to detect proteins based on the presence of associated antibodies. Because of their extensive use in research and clinical settings, a large infrastructure of immunoassay instruments and materials can be found. For example, 96- and 384-well polystyrene plates are available commercially and have a standard design to accommodate ultraviolet-visible (UV-Vis) spectroscopy machines from various manufacturers. In addition, a wide variety of immunoglobulins, detection tags, and blocking agents for customized immunoassay designs such as enzyme-linked immunosorbent assays (ELISA) are available. Despite the existing infrastructure, standard ELISA kits do not meet all research needs, requiring individualized immunoassay development, which can be expensive and time-consuming. For example, ELISA kits have low multiplexing (detection of more than one analyte at a time) capabilities as they usually depend on fluorescence or colorimetric methods for detection. Colorimetric and fluorescent-based analyses have limited multiplexing capabilities due to broad spectral peaks. In contrast, Raman spectroscopy-based methods have a much greater capability for multiplexing due to narrow emission peaks. Another advantage of Raman spectroscopy is that Raman reporters experience significantly less photobleaching than fluorescent tags1. Despite the advantages that Raman reporters have over fluorescent and colorimetric tags, protocols to fabricate Raman-based immunoassays are limited. The purpose of this paper is to provide a protocol to prepare functionalized probes to use in conjunction with polystyrene plates for direct detection of analytes by UV-Vis analysis and Raman spectroscopy. This protocol will allow researchers to take a do-it-yourself approach for future multi-analyte detection while capitalizing on pre-established infrastructure.


Subject(s)
Immunoassay , Spectrum Analysis, Raman , Colorimetry , Enzyme-Linked Immunosorbent Assay , Immunologic Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...