Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 160(8)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38415835

ABSTRACT

A nitrogen K-edge x-ray absorption near-edge structure (XANES) survey is presented for tetrapyrido[3,2-a:2',3'-c:3″,2″-h:2‴,3‴-j]phenazine (tpphz)-bridged bimetallic assemblies that couple chromophore and catalyst transition metal complexes for light driven catalysis, as well as their individual molecular constituents. We demonstrate the high N site sensitivity of the N pre-edge XANES features, which are energetically well-separated for the phenazine bridge N atoms and for the individual metal-bound N atoms of the inner coordination sphere ligands. By comparison with the time-dependent density functional theory calculated spectra, we determine the origins of these distinguishable spectral features. We find that metal coordination generates large shifts toward higher energy for the metal-bound N atoms, with increasing shift for 3d < 4d < 5d metal bonding. This is attributed to increasing ligand-to-metal σ donation that increases the effective charge of the bound N atoms and stabilizes the N 1s core electrons. In contrast, the phenazine bridge N pre-edge peak is found at a lower energy due to stabilization of the low energy electron accepting orbital localized on the phenazine motif. While no sensitivity to ground state electronic coupling between the individual molecular subunits was observed, the spectra are sensitive to structural distortions of the tpphz bridge. These results demonstrate N K-edge XANES as a local probe of electronic structure in large bridging ligand motifs, able to distinctly investigate the ligand-centered orbitals involved in metal-to-ligand and ligand-to-ligand electron transfer following light absorption.

2.
ChemSusChem ; 15(12): e202200708, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35415957

ABSTRACT

This work elaborates the effect of dynamic irradiation on light-driven molecular water oxidation to counteract deactivation. It highlights the importance of overall reaction engineering to overcome limiting factors in artificial photosynthesis reactions. Systematic investigation of a homogeneous three-component ruthenium-based water oxidation system revealed significant potential to enhance the overall catalytic efficiency by synchronizing the timescales of photoreaction and mass transport in a capillary flow reactor. The overall activity could be improved by a factor of more than 10 with respect to the turnover number and a factor of 31 referring to the external energy efficiency by controlling the local availability of photons. Detailed insights into the mechanism of light driven water oxidation could be obtained using complementary methods of investigation like Raman, IR, and UV/Vis/emission spectroscopy, unraveling the importance of avoiding high concentrations of excited photosensitizers.


Subject(s)
Ruthenium , Water , Catalysis , Oxidation-Reduction , Photosynthesis , Ruthenium/chemistry , Water/chemistry
3.
Chem Commun (Camb) ; 54(34): 4353-4355, 2018 Apr 24.
Article in English | MEDLINE | ID: mdl-29645043

ABSTRACT

We report a solution NMR and X-ray crystallographic study on the anion affinity of all-cis 1,2,3,4,5,6-hexafluorocyclohexane, which has only recently become synthetically accessible. Our results suggest that the interaction exhibits preferential 1 : 1 stoichiometry, while its strength is only moderate (e.g. Ka = 400 M-1 in acetone for Cl-) and depends mainly on the size of the anion and the dielectric constant of the solvent.

SELECTION OF CITATIONS
SEARCH DETAIL
...