Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(24)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36558138

ABSTRACT

In recent years, the chemical industry has put emphasis on designing or modifying chemical processes that would increasingly meet the requirements of the adopted proecological sustainable development strategy and the principles of green chemistry. The development of cyclic carbonate synthesis from CO2 and epoxides undoubtedly follows this trend. First, it represents a significant improvement over the older glycol phosgenation method. Second, it uses renewable and naturally abundant carbon dioxide as a raw material. Third, the process is most often solvent-free. However, due to the low reactivity of carbon dioxide, the process of synthesising cyclic carbonates requires the use of a catalyst. The efforts of researchers are mainly focused on the search for new, effective catalysts that will enable this reaction to be carried out under mild conditions with high efficiency and selectivity. Recently, deep eutectic solvents (DES) have become the subject of interest as potential effective, cheap, and biodegradable catalysts for this process. The work presents an up-to-date overview of the method of cyclic carbonate synthesis from CO2 and epoxides with the use of DES as catalysts.


Subject(s)
Carbon Dioxide , Deep Eutectic Solvents , Epoxy Compounds , Solvents , Carbonates
2.
Materials (Basel) ; 15(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36233947

ABSTRACT

During Baeyer-Villiger (BV) oxidation of cyclohexanone with peracids, oligo(ε-caprolactone) (OCL) may be formed. In this work, a two-step one-pot method for the synthesis of OCL involving the BV oxidation of cyclohexanone with peracids and then oligomerization of the resulting ε-caprolactone has been developed. The process was carried out in two solvents: toluene and cyclohexane. Based on the studies, it was determined that the increased temperature (45-55 °C) and the longer reaction time (4 h) favor the formation of OCls. Among the tested peracids (perC8-C12), perC10 turned out to be the most effective oxidant. Moreover, the obtained oligomers were characterized by means of NMR, MS MALDI TOF, and TGA analyses, which made it possible to determine the structure of oligomers (length and terminal groups of the chains). Additionally, the oligomers obtained after the distillation of the reaction mixture were analyzed.

3.
Molecules ; 27(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36234996

ABSTRACT

Immobilized poly(ethylene glycol) (PEG 600-PS) was used as an effective phase-transfer catalyst for the synthesis of hydroxypivaldehyde from isobutyraldehyde (IBA) and formaldehyde in the presence of an inorganic base. Studies on the influence of the parameters on the course of the reaction in a batch reactor showed that the use of the PEG 600-PS catalyst allowed one to obtain HPA with high efficiency (IBA conversion >96%, selectivity >98%) in a relatively short time and under mild conditions (2 h, 40 °C). The developed method enables easy separation of the post-reaction mixture by simple phase separation, and the immobilized catalyst can be separated by filtration and then used five times without a loss in its activity. The high activity and stability of the catalyst was also confirmed in a test carried out in a flow reactor.


Subject(s)
Polyethylene Glycols , Polymers , Aldehydes , Formaldehyde , Polystyrenes
4.
Molecules ; 26(19)2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34641366

ABSTRACT

Neopentyl glycol (NPG) is a precursor for the manufacture of many valuable products of industrial importance such as polyester, polyurethane and alkyd resins, synthetic lubricants, hydraulic fluids, drugs, etc. The structure of NPG provides the resins with excellent hydrolytic stability, resistance to weather conditions, good flexibility-hardness balance, and outstanding functional properties. The paper presents a literature review on the development of methods for NPG preparation, focusing primarily on the synthesis of NPG by hydrogenation of hydroxypivaldehyde, which is obtained by the crossed aldol condensation of isobutyraldehyde and formaldehyde. Preparation of the substrates, catalysts, technical and apparatus solutions, and NPG purification were discussed.

5.
Materials (Basel) ; 14(6)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808937

ABSTRACT

An effective method for levulinic acid esters synthesis by the enzymatic Fischer esterification of levulinic acid using a lipase B from Candida antarctica (CALB) immobilized on the advanced material consisting of multi-wall carbon nanotubes (MWCNTs) and a hydrophobic polymer-polytetrafluoroethylene (Teflon, PTFE)-as a heterogeneous biocatalyst, was developed. An active phase of the biocatalyst was obtained by immobilization via interfacial activation on the surface of the hybrid material MWCNTs/PTFE (immobilization yield: 6%, activity of CALB: 5000 U∙L∙kg-1, enzyme loading: 22.5 wt.%). The catalytic activity of the obtained biocatalyst and the effects of the selected reaction parameters, including the agitation speed, the amount of PTFE in the CALB/MWCNT-PTFE biocatalyst, the amount of CALB/MWCNT-PTFE, the type of organic solvent, n-butanol excess, were tested in the esterification of levulinic acid by n-butanol. The results showed that the use of a two-fold excess of levulinic acid to n-butanol, 22.5 wt.% of CALB on MWCNT-PTFE (0.10 wt.%) and cyclohexane as a solvent at 20 °C allowed one to obtain n-butyl levulinate with a high yield (99%) and selectivity (>99%) after 45 min. The catalyst retained its activity and stability after three cycles, and then started to lose activity until dropping to a 69% yield of ester in the sixth reaction run. The presented method has opened the new possibilities for environmentally friendly synthesis of levulinate esters.

6.
RSC Adv ; 10(36): 21382-21386, 2020 Jun 02.
Article in English | MEDLINE | ID: mdl-35518740

ABSTRACT

Based on MS analysis, the mechanism of the Baeyer-Villiger oxidation of cyclic ketones with hydrogen peroxide using metal triflates (Ga(OTf)3 and Er(OTf)3) as catalysts was proposed. In the case of cyclohexanone as a substrate, dimeric, trimeric and tetrameric peroxide structures were detected.

7.
Pharmaceutics ; 11(8)2019 Aug 02.
Article in English | MEDLINE | ID: mdl-31382359

ABSTRACT

The new polymeric systems for delivery in cosmetology applications were prepared using self-assembling amphiphilic graft copolymers. The synthesis based on "click" chemistry reaction included grafting of azide-functionalized polyethylene glycol (PEG-N3) onto multifunctional polymethacrylates containing alkyne units. The latter ones were obtained via atom transfer radical polymerization (ATRP) of alkyne-functionalized monomers, e.g., ester of hexynoic acid and 2-hydroxyethyl methacrylate (AlHEMA) with methyl methacrylate (MMA), using bromoester-modified retinol (RETBr) as the initiator. Varying the content of alkyne moieties adjusted by initial monomer ratios of AlHEMA/MMA was advantageous for the achievement of a well-defined grafting degree. The designed amphiphilic graft copolymers P((HEMA-graft-PEG)-co-MMA), showing tendency to micellization in aqueous solution at room temperature, were encapsulated with arbutin (ARB) or vitamin C (VitC) with high efficiencies (>50%). In vitro experiments carried out in the phosphate-buffered saline solution (PBS) at pH 7.4 indicated the maximum release of ARB after at least 20 min and VitC within 10 min. The fast release of the selected antioxidants and skin-lightening agents by these micellar systems is satisfactory for applications in cosmetology, where they can be used as the components of masks, creams, and wraps.

8.
Molecules ; 25(1)2019 Dec 28.
Article in English | MEDLINE | ID: mdl-31905595

ABSTRACT

The dialkyl peroxides, which contain a thermally unstable oxygen-oxygen bond, are an important source of radical initiators and cross-linking agents. New efficient and green methods for their synthesis are still being sought. Herein, ultrasound-assisted synthesis of dialkyl peroxides from alkyl hydroperoxides and alkyl bromides in the presence of an aqueous solution of an inorganic base was systematically studied under phase-transfer catalysis (PTC) conditions. The process run in a tri-liquid system in which polyethylene glycol as a phase-transfer catalyst formed a third liquid phase between the organic and inorganic phases. The use of ultrasound provided high yields of organic peroxides (70-99%) in significantly shorter reaction times (1.5 h) in comparison to reaction with magnetic stirring (5.0 h). In turn, conducting the reaction in the tri-liquid PTC system allowed easy separation of the catalyst and its multiple use without significant loss of activity.


Subject(s)
Green Chemistry Technology , Peroxides/chemical synthesis , Ultrasonic Waves , Catalysis , Peroxides/chemistry , Polyethylene Glycols/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...