Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plast Reconstr Surg ; 149(2): 254e-260e, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35077424

ABSTRACT

BACKGROUND: In 1968, Ralph Millard published his "Millard II" method for repair of wide, complete unilateral cleft lip and nose deformity. In 1979, Murawski published a major modification of the Millard II procedure in Polish. This motif was taken up 8 years later by Mohler and 22 years later by Cutting. The Murawski variation on the Millard II procedure has become a dominant motif in unilateral cleft lip repair worldwide. This brief report intends to introduce the method to the English language literature and present long-term results. METHODS: The Murawski method alters the Millard II procedure by changing the upper medial curve into a point in the columellar base. This creates a broad C flap used to fill the entire defect produced by downward rotation of the medial lip. Millard's lateral advancement flap becomes unnecessary. A lateral approach to primary nasal reconstruction allows the lateral C flap to be used to construct the nasal floor and sill. The method is described using a physics-based surgical simulator. RESULTS: Long-term results of the method are demonstrated with four patients with 15 to 25-year follow-up. None of these patients had any revisions to the lip or nose. CONCLUSIONS: The Murawski repair was the first to modify the Millard II repair by sharpening the medial columellar incision, eliminating the need for a lateral advancement flap. This motif was put forth in the years to follow by Mohler and Cutting. Long-term results of the method are presented.


Subject(s)
Abnormalities, Multiple/surgery , Cleft Lip/surgery , Nose/abnormalities , Nose/surgery , Plastic Surgery Procedures/methods , Follow-Up Studies , Humans , Time Factors , Treatment Outcome
2.
Plast Reconstr Surg ; 137(2): 445e-452e, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26818334

ABSTRACT

BACKGROUND: This article presents a real-time surgical simulator for teaching three- dimensional local flap concepts. Mass-spring based simulators are interactive, but they compromise accuracy and realism. Accurate finite element approaches have traditionally been too slow to permit development of a real-time simulator. METHODS: A new computational formulation of the finite element method has been applied to a simulated surgical environment. The surgical operators of retraction, incision, excision, and suturing are provided for three-dimensional operation on skin sheets and scalp flaps. A history mechanism records a user's surgical sequence. Numerical simulation was accomplished by a single small-form-factor computer attached to eight inexpensive Web-based terminals at a total cost of $2100. A local flaps workshop was held for the plastic surgery residents at the University of Wisconsin hospitals. RESULTS: Various flap designs of Z-plasty, rotation, rhomboid flaps, S-plasty, and related techniques were demonstrated in three dimensions. Angle and incision segment length alteration advantages were demonstrated (e.g., opening the angle of a Z-plasty in a three-dimensional web contracture). These principles were then combined in a scalp flap model demonstrating rotation flaps, dual S-plasty, and the Dufourmentel Mouly quad rhomboid flap procedure to demonstrate optimal distribution of secondary defect closure stresses. CONCLUSIONS: A preliminary skin flap simulator has been demonstrated to be an effective teaching platform for the real-time elucidation of local flap principles. Future work will involve adaptation of the system to facial flaps, breast surgery, cleft lip, and other problems in plastic surgery as well as surgery in general.


Subject(s)
Algorithms , Computer Simulation , Finite Element Analysis , Models, Theoretical , Plastic Surgery Procedures/methods , Surgical Flaps , Computer Systems , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...