Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 11(9): 3203-3210, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32251591

ABSTRACT

The decay mechanism of S0 → S1 excited cytosine (Cyt) and the effect of substitution are studied combining jet-cooled spectroscopy (nanosecond resonant two-photon ionization (R2PI) and picosecond lifetime measurements) with CASPT2//CASSCF computations for eight derivatives. For Cyt and five derivatives substituted at N1, C5, and C6, rapid internal conversion sets in at 250-1200 cm-1 above the 000 bands. The break-off in the spectra correlates with the calculated barriers toward the "C5-C6 twist" conical intersection, which unambiguously establishes the decay mechanism at low S1 state vibrational energies. The barriers increase with substituents that stabilize the charge shifts at C4, C5, and C6 following (1ππ*) excitation. The R2PI spectra of the clamped derivatives 5,6-trimethyleneCyt (TMCyt) and 1-methyl-TMCyt (1M-TMCyt), which decay along an N3 out-of-plane coordinate, extend up to +3500 and +4500 cm-1.

2.
J Chem Phys ; 151(12): 124301, 2019 Sep 28.
Article in English | MEDLINE | ID: mdl-31575195

ABSTRACT

The S1 excited-state lifetime of jet-cooled 1-ethylcytosine (1ECyt) is ∼1 ns, one of the longest lifetimes for cytosine derivatives to date. Here, we analyze its S0 → S1 vibronic spectrum using two-color resonant two-photon ionization and UV/UV holeburning spectroscopy. Compared to cytosine and 1-methylcytosine, the S0 → S1 spectrum of 1ECyt shows a progression in the out-of-plane "butterfly" mode ν1 ', identified by spin-component scaled-second-order coupled-cluster method ab initio calculations. We also report time-resolved S1 state nonradiative dynamics at ∼20 ps resolution by the pump/delayed ionization technique. The S1 lifetime increases with the number of ν1 ' quanta from τ = 930 ps at v1 '=0 to 1030 ps at v1 '=2, decreasing to 14 ps at 710 cm-1 vibrational energy. We measured the rate constants for S1 ⇝ S0 internal conversion and S1 ⇝ T1 intersystem crossing (ISC): At the v' = 0 level, kIC is 8 × 108 s-1 or three times smaller than 1-methylcytosine. The ISC rate constant from v' = 0 to the T1(3ππ*) state is kISC = 2.4 × 108 s-1, 10 times smaller than the ISC rate constants of cytosine, but similar to that of 1-methylcytosine. Based on the calculated S1(1ππ*) state radiative lifetime τrad = 12 ns, the fluorescence quantum yield of 1ECyt is Φfl ∼ 7% and the intersystem crossing yield is ΦISC ∼ 20%. We measured the adiabatic ionization energy of 1-ethylcytosine via excitation of the S1 state as 8.353 ± 0.008 eV, which is 0.38 eV lower than that of amino-keto cytosine. Measurement of the ionization energy of the long-lived T1(ππ*) state formed via ISC reveals that it lies 3.2-3.4 eV above the S0 ground state.

3.
J Phys Chem A ; 122(48): 9285-9297, 2018 Dec 06.
Article in English | MEDLINE | ID: mdl-30398869

ABSTRACT

Mass-selective two-color resonant two-photon ionization (2C-R2PI), UV/UV hole-burning, and infrared (IR) depletion spectra of supersonic jet-cooled 2-pyridone·(H2O) n clusters with n = 1-4 have been measured to investigate the local hydration patterns around 2-pyridone (2PY) as a function of cluster size. As shown by others, the IR frequencies of the OH and NH stretches of the n = 1, 2 clusters are characteristic of water wires stretching from the NH to the C═O group of 2PY. We identify two isomers (3A and 3B) of the n = 3 cluster in the 2C-R2PI spectrum and separate them by IR/UV and UV/UV hole-burning techniques. Isomer 3A exhibits a three-membered water wire, extending the n = 1, 2 structural motif. Isomer 3B exhibits bifurcated water wires with the first H2O donating to two waters that form H-bonds to the C═O group. This increases the H-bond strength between the NH group of 2PY and the proximal H2O molecule, lowering the NH stretch to ∼2800 cm-1. The n = 4 cluster is also bifurcated with two water wires between the bifurcating H2O and the C═O group. The cluster-selective IR spectra are complemented with density-functional calculations using the PW91, B3LYP, B97-D, and M06-2X functionals, where the latter two include long-range dispersive interactions, and with the ab initio correlated SCS-CC2 method. The calculated IR spectra provide firm assignments of the structures of the n = 1-4 cluster structures and allow us to understand the evolution of individual H-bond strengths with increasing cluster size.

SELECTION OF CITATIONS
SEARCH DETAIL
...