Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 922: 171302, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38428607

ABSTRACT

Green roofs have been increasingly used to improve stormwater management, but poor vegetation performance on roof systems, varying with vegetation type, can degrade discharge quality. Biochar has been suggested as an effective substrate additive for green roofs to improve plant performance and discharge quality. However, research on the effects of biochar and vegetation on discharge quality in the long term is lacking and the underlying mechanisms involved are unclear. We examined the effects of biochar amendment and vegetation on discharge quality on organic-substrate green roofs with pre-grown sedum mats and direct-seeded native plants for three years and investigated the key factors influencing discharge quality. Sedum mats reduced the leaching of nutrients and particulate matter by 6-64% relative to native plants, largely due to the higher initial vegetation cover of the former. Biochar addition to sedum mat green roofs resulted in the best integrated water quality due to enhanced plant cover and sorption effects. Structural equation modeling revealed that nutrient leaching was primarily influenced by rainfall depth, time, vegetation cover, and substrate pH. Although biochar-amended sedum mats showed better discharge quality from organic-substrate green roofs, additional ecosystem services may be provided by native plants, suggesting future research to optimize plant composition and cover and biochar properties for sustainable green roofs.


Subject(s)
Charcoal , Sedum , Water Quality , Ecosystem , Conservation of Natural Resources/methods , Rain , Plants
2.
PLoS One ; 18(7): e0288291, 2023.
Article in English | MEDLINE | ID: mdl-37463169

ABSTRACT

Declining tree health status due to pollutant impacts and nutrient imbalance is widespread in urban forests; however, chemical fertilizer use is increasingly avoided to reduce eutrophication impacts. Biochar (pyrolyzed organic waste) has been advocated as an alternative soil amendment, but biochar alone generally reduces plant N availability. The combination of biochar and either organic forms of N or Plant Growth Promoting Microbes (PGPMs) as biofertilizers may address these challenges. We examined the effects of two wood biochar types with Bacillus velezensis and an inactivated yeast (IY) biofertilizer in a three-month factorial greenhouse experiment with Acer saccharinum L. (silver maple) saplings grown in a representative urban soil. All treatments combining biochars with biofertilizers significantly increased sapling growth, with up to a 91% increase in biomass relative to controls. Growth and physiological responses were closely related to nutrient uptake patterns, with nutrient vector analyses indicating that combined biochar and biofertilizer treatments effectively addressed nutrient limitations of both macronutrients (N, P, K, Mg, Ca), and micronutrients (B, Fe, Mn, Mo, Na, S, and Zn). Biochar-biofertilizer treatments also reduced foliar concentrations of Cu, suggesting potential to mitigate toxic metal impacts common in urban forestry. We conclude that selected combinations of biochar and biofertilizers have substantial promise to address common soil limitations to tree performance in urban settings.


Subject(s)
Acer , Soil Pollutants , Charcoal , Nutrients , Soil , Trees
3.
Biochar ; 4(1): 61, 2022.
Article in English | MEDLINE | ID: mdl-36317055

ABSTRACT

Green roofs are exposed to high winds and harsh environmental conditions that can degrade vegetation and erode substrate material, with negative consequences to ecosystem services. Biochar has been promoted as an effective substrate additive to enhance plant performance, but unprocessed biochars are susceptible to wind and water erosion. Applications of granulated biochars or chemical dust suppressants are suggested as a means to mitigate biochar and substrate erosion; however, research on biochar type and chemical dust suppressant use on biochar and substrate erosion is lacking. Vegetation is a crucial factor that influences substrate erosion, yet plant responses may vary with biochar type and chemical dust suppressant; thus, the effects of possible mitigation measures on biochar and substrate erosion are unclear. We investigated the effects of surface-applied granulated and unprocessed biochars and an organic dust suppressant (Entac™) on biochar and substrate erosion on green roofs with Sedum album L. and a native plant mix. Our results show that 94% of unprocessed biochars were lost from green roofs after 2 years regardless of the Entac™ amendment, likely due to the lightweight nature and fragmentation of biochar particles. In contrast, granulation of biochars reduced the biochar erosion and total substrate erosion by 74% and 39%, respectively, possibly due to enhanced biochar bulk density and particle size and improved moisture retention of biochar-amended substrates. Additionally, Sedum album better reduced biochar and substrate erosion than the native plant mix, likely due to rapid development of high vegetation cover that reduced wind exposure and enhanced substrate moisture retention. We conclude that applications of granulated biochars can substantially reduce biochar and substrate erosion on green roofs, improving green roof sustainability. Supplementary Information: The online version contains supplementary material available at 10.1007/s42773-022-00186-7.

SELECTION OF CITATIONS
SEARCH DETAIL
...