Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38405985

ABSTRACT

A central problem in cancer immunotherapy with immune checkpoint blockade (ICB) is the development of resistance, which affects 50% of patients with metastatic melanoma1,2. T cell exhaustion, resulting from chronic antigen exposure in the tumour microenvironment, is a major driver of ICB resistance3. Here, we show that CD38, an ecto-enzyme involved in nicotinamide adenine dinucleotide (NAD+) catabolism, is highly expressed in exhausted CD8+ T cells in melanoma and is associated with ICB resistance. Tumour-derived CD38hiCD8+ T cells are dysfunctional, characterised by impaired proliferative capacity, effector function, and dysregulated mitochondrial bioenergetics. Genetic and pharmacological blockade of CD38 in murine and patient-derived organotypic tumour models (MDOTS/PDOTS) enhanced tumour immunity and overcame ICB resistance. Mechanistically, disrupting CD38 activity in T cells restored cellular NAD+ pools, improved mitochondrial function, increased proliferation, augmented effector function, and restored ICB sensitivity. Taken together, these data demonstrate a role for the CD38-NAD+ axis in promoting T cell exhaustion and ICB resistance, and establish the efficacy of CD38 directed therapeutic strategies to overcome ICB resistance using clinically relevant, patient-derived 3D tumour models.

2.
J Immunother Cancer ; 12(1)2024 01 17.
Article in English | MEDLINE | ID: mdl-38233101

ABSTRACT

BACKGROUND: Immune-related adverse events (irAEs) are major barriers of clinical management and further development of immune checkpoint inhibitors (ICIs) for cancer therapy. Therefore, biomarkers associated with the onset of severe irAEs are needed. In this study, we aimed to identify immune features detectable in peripheral blood and associated with the development of severe irAEs that required clinical intervention. METHODS: We used a 43-marker mass cytometry panel to characterize peripheral blood mononuclear cells from 28 unique patients with melanoma across 29 lines of ICI therapy before treatment (baseline), before the onset of irAEs (pre-irAE) and at the peak of irAEs (irAE-max). In the 29 lines of ICI therapy, 18 resulted in severe irAEs and 11 did not. RESULTS: Unsupervised and gated population analysis showed that patients with severe irAEs had a higher frequency of CD4+ naïve T cells and lower frequency of CD16+ natural killer (NK) cells at all time points. Gated population analysis additionally showed that patients with severe irAEs had fewer T cell immunoreceptor with Ig and ITIM domain (TIGIT+) regulatory T cells at baseline and more activated CD38+ CD4+ central memory T cells (TCM) and CD39+ and Human Leukocyte Antigen-DR Isotype (HLA-DR)+ CD8+ TCM at peak of irAEs. The differentiating immune features at baseline were predominantly seen in patients with gastrointestinal and cutaneous irAEs and type 1 diabetes. Higher frequencies of CD4+ naïve T cells and lower frequencies of CD16+ NK cells were also associated with clinical benefit to ICI therapy. CONCLUSIONS: This study demonstrates that high-dimensional immune profiling can reveal novel blood-based immune signatures associated with risk and mechanism of severe irAEs. Development of severe irAEs in melanoma could be the result of reduced immune inhibitory capacity pre-ICI treatment, resulting in more activated TCM cells after treatment.


Subject(s)
Melanoma , T-Lymphocytes, Regulatory , Humans , Immune Checkpoint Inhibitors/adverse effects , Leukocytes, Mononuclear , Melanoma/drug therapy , Killer Cells, Natural
4.
Methods Mol Biol ; 2543: 113-128, 2022.
Article in English | MEDLINE | ID: mdl-36087263

ABSTRACT

Phosphoflow is a powerful tool that allows researchers to measure distinct signaling responses to various stimuli in multiple subpopulations of cells. Extension of this technique to mass cytometry (cytometry by time-of-flight or CyTOF) allows many more cell phenotypes and signaling nodes to be interrogated in parallel. The use of fresh whole blood is ideal for capturing the in vivo signaling state of all leukocytes, including granulocytes. In this chapter, we provide a detailed protocol for performing CyTOF phosphoflow in human whole blood, using cytokines and other stimuli. Barcoding and combining of multiple samples and other techniques to reduce batch effects and provide optimal comparability between samples/stimulations are also described.


Subject(s)
Immunologic Tests , Signal Transduction , Cytokines , Flow Cytometry/methods , Humans , Phenotype
5.
Clin Cancer Res ; 27(18): 5062-5071, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34266889

ABSTRACT

PURPOSE: The Cancer Immune Monitoring and Analysis Centers - Cancer Immunologic Data Commons (CIMAC-CIDC) Network is supported by the NCI to identify biomarkers of response to cancer immunotherapies across clinical trials using state-of-the-art assays. A primary platform for CIMAC-CIDC studies is cytometry by time of flight (CyTOF), performed at all CIMAC laboratories. To ensure the ability to generate comparable CyTOF data across labs, a multistep cross-site harmonization effort was undertaken. EXPERIMENTAL DESIGN: We first harmonized standard operating procedures (SOPs) across the CIMAC sites. Because of a new acquisition protocol comparing original narrow- or new wide-bore injector introduced by the vendor (Fluidigm), we also tested this protocol across sites before finalizing the harmonized SOP. We then performed cross-site assay harmonization experiments using five shared cryopreserved and one lyophilized internal control peripheral blood mononuclear cell (PBMC) with a shared lyophilized antibody cocktail consisting of 14 isotype-tagged antibodies previously validated, plus additional liquid antibodies. These reagents and samples were distributed to the CIMAC sites and the data were centrally analyzed by manual gating and automated methods (Astrolabe). RESULTS: Average coefficients of variation (CV) across sites for each cell population were reported and compared with a previous multisite CyTOF study. We reached an intersite CV of under 20% for most cell subsets, very similar to a previously published study. CONCLUSIONS: These results establish the ability to reproduce CyTOF data across sites in multicenter clinical trials, and also highlight the importance of quality control procedures, such as the use of spike-in control samples, for tracking variability in this assay.


Subject(s)
Biomarkers, Tumor/analysis , Flow Cytometry , Leukocytes, Mononuclear , Neoplasms/blood , Neoplasms/immunology , Neoplasms/pathology , Humans , Monitoring, Immunologic
6.
Nature ; 596(7872): 410-416, 2021 08.
Article in English | MEDLINE | ID: mdl-34252919

ABSTRACT

The emergency use authorization of two mRNA vaccines in less than a year from the emergence of SARS-CoV-2 represents a landmark in vaccinology1,2. Yet, how mRNA vaccines stimulate the immune system to elicit protective immune responses is unknown. Here we used a systems vaccinology approach to comprehensively profile the innate and adaptive immune responses of 56 healthy volunteers who were vaccinated with the Pfizer-BioNTech mRNA vaccine (BNT162b2). Vaccination resulted in the robust production of neutralizing antibodies against the wild-type SARS-CoV-2 (derived from 2019-nCOV/USA_WA1/2020) and, to a lesser extent, the B.1.351 strain, as well as significant increases in antigen-specific polyfunctional CD4 and CD8 T cells after the second dose. Booster vaccination stimulated a notably enhanced innate immune response as compared to primary vaccination, evidenced by (1) a greater frequency of CD14+CD16+ inflammatory monocytes; (2) a higher concentration of plasma IFNγ; and (3) a transcriptional signature of innate antiviral immunity. Consistent with these observations, our single-cell transcriptomics analysis demonstrated an approximately 100-fold increase in the frequency of a myeloid cell cluster enriched in interferon-response transcription factors and reduced in AP-1 transcription factors, after secondary immunization. Finally, we identified distinct innate pathways associated with CD8 T cell and neutralizing antibody responses, and show that a monocyte-related signature correlates with the neutralizing antibody response against the B.1.351 variant. Collectively, these data provide insights into the immune responses induced by mRNA vaccination and demonstrate its capacity to prime the innate immune system to mount a more potent response after booster immunization.


Subject(s)
Adaptive Immunity , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Immunity, Innate , T-Lymphocytes/immunology , Vaccinology , Adult , Aged , Antibodies, Neutralizing/immunology , Autoantibodies/immunology , BNT162 Vaccine , COVID-19 Vaccines/administration & dosage , Female , Humans , Immunization, Secondary , Male , Middle Aged , Single-Cell Analysis , Spike Glycoprotein, Coronavirus/immunology , Transcription, Genetic , Transcriptome/genetics , Young Adult
7.
Res Sq ; 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-34013244

ABSTRACT

The emergency use authorization of two COVID-19 mRNA vaccines in less than a year since the emergence of SARS-CoV-2, represents a landmark in vaccinology1,2. Yet, how mRNA vaccines stimulate the immune system to elicit protective immune responses is unknown. Here we used a systems biological approach to comprehensively profile the innate and adaptive immune responses in 56 healthy volunteers vaccinated with the Pfizer-BioNTech mRNA vaccine. Vaccination resulted in robust production of neutralizing antibodies (nAbs) against the parent strain and the variant of concern, B.1.351, but no induction of autoantibodies, and significant increases in antigen-specific polyfunctional CD4 and CD8 T cells after the second dose. The innate response induced within the first 2 days of booster vaccination was profoundly increased, relative to the response at corresponding times after priming. Thus, there was a striking increase in the: (i) frequency of CD14+CD16+ inflammatory monocytes; (ii) concentration of IFN- y in the plasma, which correlated with enhanced pSTAT3 and pSTAT1 levels in monocytes and T cells; and (iii) transcriptional signatures of innate responses characteristic of antiviral vaccine responses against pandemic influenza, HIV and Ebola, within 2 days following booster vaccination compared to primary vaccination. Consistent with these observations, single-cell transcriptomics analysis of 242,479 leukocytes demonstrated a ~100-fold increase in the frequency of a myeloid cluster, enriched in a signature of interferon-response transcription factors (TFs) and reduced in AP-1 TFs, one day after secondary immunization, at day 21. Finally, we delineated distinct molecular pathways of innate activation that correlate with CD8 T cell and nAb responses and identified an early monocyte-related signature that was associated with the breadth of the nAb response against the B1.351 variant strain. Collectively, these data provide insights into the immune responses induced by mRNA vaccines and demonstrate their capacity to stimulate an enhanced innate response following booster immunization.

8.
Science ; 369(6508): 1210-1220, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32788292

ABSTRACT

Coronavirus disease 2019 (COVID-19) represents a global crisis, yet major knowledge gaps remain about human immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We analyzed immune responses in 76 COVID-19 patients and 69 healthy individuals from Hong Kong and Atlanta, Georgia, United States. In the peripheral blood mononuclear cells (PBMCs) of COVID-19 patients, we observed reduced expression of human leukocyte antigen class DR (HLA-DR) and proinflammatory cytokines by myeloid cells as well as impaired mammalian target of rapamycin (mTOR) signaling and interferon-α (IFN-α) production by plasmacytoid dendritic cells. By contrast, we detected enhanced plasma levels of inflammatory mediators-including EN-RAGE, TNFSF14, and oncostatin M-which correlated with disease severity and increased bacterial products in plasma. Single-cell transcriptomics revealed a lack of type I IFNs, reduced HLA-DR in the myeloid cells of patients with severe COVID-19, and transient expression of IFN-stimulated genes. This was consistent with bulk PBMC transcriptomics and transient, low IFN-α levels in plasma during infection. These results reveal mechanisms and potential therapeutic targets for COVID-19.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , COVID-19 , Cytokines/blood , DNA, Bacterial/blood , Dendritic Cells/immunology , Dendritic Cells/metabolism , Female , Flow Cytometry , HLA-DR Antigens/analysis , Humans , Immunity , Immunity, Innate , Immunoglobulins/blood , Immunoglobulins/immunology , Inflammation Mediators/blood , Interferon Type I/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides/blood , Male , Myeloid Cells/immunology , Myeloid Cells/metabolism , Pandemics , SARS-CoV-2 , Signal Transduction , Single-Cell Analysis , Systems Biology , TOR Serine-Threonine Kinases/metabolism , Transcription, Genetic , Transcriptome
9.
Front Immunol ; 10: 2239, 2019.
Article in English | MEDLINE | ID: mdl-31620139

ABSTRACT

During the first 5 years of life, children are especially vulnerable to infection-related morbidity and mortality. Conversely, the Hygiene Hypothesis suggests that a lack of exposure to infectious agents early in life could explain the increasing incidence of allergies and autoimmunity in high-income countries. Understanding these phenomena, however, is hampered by a lack of comprehensive, direct immune monitoring in children with differing degrees of microbial exposure. Using mass cytometry, we provide an in-depth profile of the peripheral blood mononuclear cells (PBMCs) of children in regions at the extremes of exposure: the San Francisco Bay Area, USA and an economically poor district of Dhaka, Bangladesh. Despite variability in clinical health, functional characteristics of PBMCs were similar in Bangladeshi and American children at 1 year of age. However, by 2-3 years of age, Bangladeshi children's immune cells often demonstrated altered activation and cytokine production profiles upon stimulation with PMA-ionomycin, with an overall immune trajectory more in line with American adults. Conversely, immune responses in children from the US remained steady. Using principal component analysis, donor location, ethnic background, and cytomegalovirus infection status were found to account for some of the variation identified among samples. Within Bangladeshi 1-year-olds, stunting (as measured by height-for-age z-scores) was found to be associated with IL-8 and TGFß expression in PMA-ionomycin stimulated samples. Combined, these findings provide important insights into the immune systems of children in high vs. low microbial exposure environments and suggest an important role for IL-8 and TGFß in mitigating the microbial challenges faced by the Bangladeshi children.


Subject(s)
Cell Differentiation/immunology , T-Lymphocytes/immunology , Bangladesh , Child , Child, Preschool , Cytokines/immunology , Female , Humans , Infant , Interleukin-8/immunology , Leukocytes, Mononuclear/immunology , Lymphocyte Activation/immunology , Male , Transforming Growth Factor beta/immunology , Transforming Growth Factor beta1/immunology , United States
10.
Cell Rep ; 28(3): 819-831.e4, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31315057

ABSTRACT

The success of immunotherapy has led to a myriad of clinical trials accompanied by efforts to gain mechanistic insight and identify predictive signatures for personalization. However, many immune monitoring technologies face investigator bias, missing unanticipated cellular responses in limited clinical material. We present here a mass cytometry (CyTOF) workflow for standardized, systems-level biomarker discovery in immunotherapy trials. To broadly enumerate immune cell identity and activity, we established and extensively assessed a reference panel of 33 antibodies to cover major cell subsets, simultaneously quantifying activation and immune checkpoint molecules in a single assay. This assay enumerates ≥98% of peripheral immune cells with ≥4 positively identifying antigens. Robustness and reproducibility are demonstrated on multiple samples types, across two research centers and by orthogonal measurements. Using automated analysis, we identify stratifying immune signatures in bone marrow transplantation-associated graft-versus-host disease. Together, this validated workflow ensures comprehensive immunophenotypic analysis and data comparability and will accelerate biomarker discovery.


Subject(s)
Clinical Trials as Topic , Immunophenotyping/methods , Immunotherapy/methods , Monitoring, Immunologic/methods , Adult , Aged , Aged, 80 and over , Biomarkers/analysis , Female , Graft vs Host Disease/immunology , Humans , Immunophenotyping/standards , Male , Middle Aged , Monitoring, Immunologic/standards , Neoplasms/immunology , Neoplasms/therapy , Reference Standards
11.
Proc Natl Acad Sci U S A ; 113(13): E1890-7, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-26979955

ABSTRACT

Here we report a peptide-MHC (pMHC) dodecamer as a "next generation" technology that is a significantly more sensitive and versatile alternative to pMHC tetramers for the detection, isolation, and phenotypic analysis of antigen-specific T cells. In particular, dodecamers are able to detect two- to fivefold more antigen-specific T cells in both human and murine CD4(+)and CD8(+)αß T-cell compartments compared with the equivalent tetramers. The low-affinity, tetramer-negative, dodecamer-positive T cells showed comparable effector cytokine responses as those of high-affinity, tetramer-positive T cells. Dodecamers are able to detect early stage CD4(+)CD8(+)double-positive thymocytes on which T-cell receptors are 10- to 30-fold less dense than mature T cells. Dodecamers also show utility in the analysis of γδ T cells and in cytometry by time-of-flight applications. This construct has a simple structure with a central scaffold protein linked to four streptavidin molecules, each having three pMHC ligands or other molecules. The dodecamer is straightforward and inexpensive to produce and is compatible with current tetramer technology and commercially available streptavidin conjugates.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immunophenotyping/methods , Peptides/metabolism , Animals , CD4-Positive T-Lymphocytes/parasitology , CD8-Positive T-Lymphocytes/physiology , Flow Cytometry/methods , Humans , Major Histocompatibility Complex , Mice, Transgenic , Peptides/chemistry , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Single-Cell Analysis/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
12.
Nat Biotechnol ; 31(7): 623-9, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23748502

ABSTRACT

It is currently not possible to predict which epitopes will be recognized by T cells in different individuals. This is a barrier to the thorough analysis and understanding of T-cell responses after vaccination or infection. Here, by combining mass cytometry with combinatorial peptide-MHC tetramer staining, we have developed a method allowing the rapid and simultaneous identification and characterization of T cells specific for many epitopes. We use this to screen up to 109 different peptide-MHC tetramers in a single human blood sample, while still retaining at least 23 labels to analyze other markers of T-cell phenotype and function. Among 77 candidate rotavirus epitopes, we identified six T-cell epitopes restricted to human leukocyte antigen (HLA)-A*0201 in the blood of healthy individuals. T cells specific for epitopes in the rotavirus VP3 protein displayed a distinct phenotype and were present at high frequencies in intestinal epithelium. This approach should be useful for the comprehensive analysis of T-cell responses to infectious diseases or vaccines.


Subject(s)
Epitope Mapping , Epitopes, T-Lymphocyte/immunology , HLA-A Antigens/immunology , Peptides/immunology , Antigens, Viral/immunology , Flow Cytometry , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/immunology , Humans , Mass Spectrometry , Peptides/chemistry , Rotavirus/immunology , Rotavirus/metabolism , T-Lymphocytes
13.
Immunity ; 36(1): 142-52, 2012 Jan 27.
Article in English | MEDLINE | ID: mdl-22265676

ABSTRACT

Cytotoxic CD8(+) T lymphocytes directly kill infected or aberrant cells and secrete proinflammatory cytokines. By using metal-labeled probes and mass spectrometric analysis (cytometry by time-of-flight, or CyTOF) of human CD8(+) T cells, we analyzed the expression of many more proteins than previously possible with fluorescent labels, including surface markers, cytokines, and antigen specificity with modified peptide-MHC tetramers. With 3-dimensional principal component analysis (3D-PCA) to display phenotypic diversity, we observed a relatively uniform pattern of variation in all subjects tested, highlighting the interrelatedness of previously described subsets and the continuous nature of CD8(+) T cell differentiation. These data also showed much greater complexity in the CD8(+) T cell compartment than previously appreciated, including a nearly combinatorial pattern of cytokine expression, with distinct niches occupied by virus-specific cells. This large degree of functional diversity even between cells with the same specificity gives CD8(+) T cells a remarkable degree of flexibility in responding to pathogens.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Cytokines/metabolism , Antigens, Viral, Tumor/immunology , Flow Cytometry , Humans , Mass Spectrometry , Phenotype , Principal Component Analysis
14.
Inflammation ; 27(3): 147-59, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12875368

ABSTRACT

The NADPH oxidase complex of phagocytes comprises a membrane-associated flavocytochrome b559, and 4 cytosolic components: p47phox, p67phox, p40phox, and the small GTPase Rac. Activation of the oxidase in vivo is the result of assembly of the cytosolic components with cytochrome b559 and is mimicked in vitro by a cell-free system consisting of membranes, p47phox, p67phox, nonprenylated or prenylated Rac, and an anionic amphiphile as activator (defined as "p47phox and amphiphile-dependent" or canonical pathway). We reported that prenylated Rac1 is capable of activating the NADPH oxidase in vitro in the absence of p47phox and amphiphile (defined as "p47phox and amphiphile-independent" pathway). We now demonstrate that the 2 pathways exhibit distinctive susceptibilities to inhibitors: 1) The anionic amphiphile lithium dodecyl sulfate, an activator of the canonical pathway, has the opposite effect (inhibition) on oxidase activation by prenylated Rac and p67phox; 2) GDP and, paradoxically, GTP (but not GMP, ATP, ADP, and AMP) prevent oxidase activation by the p47phox and amphiphile-independent pathway but do not affect activation by the canonical pathway; 3) The Rac-binding domain of p21-activated kinase is a potent inhibitor of activation by the p47phox and amphiphile-independent pathway while exerting a milder inhibitory effect on the canonical pathway; 4) The C-terminal polybasic Rac1 peptide 177-191 and the cationic antibiotic neomycin sulfate inhibit activation by the canonical pathway but do not affect activation by the p47phox and amphiphile-independent pathway; 5) Binding of prenylated Rac1 to membrane-mimicking phospholipid vesicles is, nevertheless, enhanced when these contain negatively charged lipids. It is proposed that preferential inhibition of oxidase activation, via the p47phox and amphiphile-independent pathway, is a reflection of interference by the inhibitors with Rac-dependent recruitment of p67phox to the membrane.


Subject(s)
Enzyme Inhibitors/pharmacology , NADPH Oxidases/metabolism , Phagocytes/enzymology , Signal Transduction/physiology , Superoxides/metabolism , Animals , Enzyme Activation/drug effects , Enzyme Activation/physiology , Guinea Pigs , NADPH Oxidases/antagonists & inhibitors , Phagocytes/drug effects , Phagocytes/metabolism , Phosphoproteins/metabolism , Signal Transduction/drug effects
15.
J Biol Chem ; 278(7): 4854-61, 2003 Feb 14.
Article in English | MEDLINE | ID: mdl-12475976

ABSTRACT

The superoxide-generating NADPH oxidase complex of phagocytes consists of a membrane-associated flavocytochrome b(559) and four cytosolic components as follows: p47(phox), p67(phox), p40(phox), and the small GTPase Rac (1 or 2). Activation of the oxidase is the result of assembly of the cytosolic components with cytochrome b(559) and can be mimicked in vitro by mixtures of membrane and cytosolic components exposed to an anionic amphiphile, serving as activator. We reported that prenylation of Rac1 endows it with the ability to support oxidase activation in conjunction with p67(phox) but in the absence of amphiphile and p47(phox). We now show the following 6 points. 1) The Rac guanine nucleotide exchange factor Trio markedly potentiates oxidase activation by prenylated Rac1-GDP. 2) This occurs in the absence of exogenous GTP or any other source of GTP generation, demonstrating that the effect of Trio does not involve GDP to GTP exchange on Rac1. 3) Trio does not potentiate oxidase activation by prenylated Rac1-GTP, by nonprenylated Rac1-GDP in the presence or absence of amphiphile, and by a prenylated [p67(phox)-Rac1] chimera in GDP-bound form. 4) Rac1 mutants defective in the ability to bind Trio or to respond to Trio by nucleotide exchange fail to respond to Trio by enhanced oxidase activation. 5) A Trio mutant with conserved Rac1-binding ability but lacking nucleotide exchange activity fails to enhance oxidase activation. 6) The effect of Trio is mimicked by displacement of Mg(2+) from Rac1-GDP. These results reveal the existence of a novel mechanism of Rac activation by a guanine nucleotide exchange factor and suggest that the induction by Trio of a conformational change in Rac1, in the absence of nucleotide exchange, is sufficient for enhancing its effector function.


Subject(s)
Guanine Nucleotide Exchange Factors/metabolism , Macrophages, Peritoneal/metabolism , NADPH Oxidases/metabolism , Saccharomyces cerevisiae Proteins , rac1 GTP-Binding Protein/metabolism , Animals , Aptamers, Peptide , Cells, Cultured , Enzyme Activation/drug effects , Guanine Nucleotide Exchange Factors/pharmacology , Guanosine Diphosphate/metabolism , Guanosine Triphosphate/metabolism , Guinea Pigs , Protein Conformation , Structure-Activity Relationship , rac1 GTP-Binding Protein/chemistry
16.
J Biol Chem ; 277(21): 18605-10, 2002 May 24.
Article in English | MEDLINE | ID: mdl-11896062

ABSTRACT

Activation of the superoxide-generating NADPH oxidase of phagocytes is the result of the assembly of a membrane-localized flavocytochrome (cytochrome b(559)) with the cytosolic components p47(phox), p67(phox), and the small GTPase Rac. Activation can be reproduced in an in vitro system in which cytochrome b(559)-containing membranes are mixed with cytosolic components in the presence of an anionic amphiphile. We proposed that the essential event in activation is the interaction between p67(phox) and cytochrome b(559) and that Rac and p47(phox) serve as carriers for p67(phox) to the membrane. When prenylated, Rac can fulfill the carrier function by itself, supporting oxidase activation by p67(phox) in the absence of p47(phox) and amphiphile. We now show that a single chimeric protein, consisting of residues 1-212 of p67(phox) and full-length Rac1 (residues 1-192), prenylated in vitro and exchanged to GTP, becomes a potent oxidase activator in the absence of any other component or stimulus. Oxidase activation by prenylated chimera p67(phox) (1-212)-Rac1 (1-192) is accompanied by its spontaneous association with membranes. Prenylated chimeras p67(phox) (1-212)-Rac1 (178-192) and p67(phox) (1-212)-Rac1 (189-192), containing specific C-terminal regions of Rac1, are inactive; the activity of the first but not of the second chimera can be rescued by supplementation with exogenous nonprenylated Rac1-GTP. An analysis of prenylated p67(phox)-Rac1 chimeras suggests that the basic requirements for oxidase activation are: (i) a "two signals" membrane-localizing motif present in Rac, comprising the prenyl group and a C-terminal polybasic sequence and (ii) an intrachimeric or extrachimeric protein-protein interaction between p67(phox) and Rac1, causing a conformational change in the "activation domain" in p67(phox).


Subject(s)
NADP/metabolism , Phagocytes/metabolism , Phosphoproteins/metabolism , Recombinant Fusion Proteins/metabolism , Superoxides/metabolism , rac1 GTP-Binding Protein/metabolism , Animals , Cell Membrane/metabolism , Guinea Pigs , Protein Prenylation
17.
J Biol Chem ; 277(10): 8421-32, 2002 Mar 08.
Article in English | MEDLINE | ID: mdl-11733522

ABSTRACT

The superoxide-generating NADPH oxidase complex of phagocytes consists of a membranal heterodimeric flavocytochrome (cytochrome b(559)), composed of gp91(phox) and p22(phox) subunits, and four cytosolic proteins, p47(phox), p67(phox), p40(phox), and the small GTPase Rac (1 or 2). All redox stations involved in electron transport from NADPH to oxygen are located in gp91(phox). NADPH oxidase activation is the consequence of assembly of cytochrome b(559) with cytosolic proteins, a process reproducible in a cell-free system, consisting of phagocyte membranes, and recombinant cytosolic components, activated by an anionic amphiphile. p22(phox) is believed to act as a linker between the cytosolic components and gp91(phox). We applied "peptide walking" to mapping of domains in p22(phox) participating in NADPH oxidase assembly. Ninety one synthetic overlapping pentadecapeptides, spanning the p22(phox) sequence, were tested for the ability to inhibit NADPH oxidase activation in the cell-free system and to bind individual cytosolic NADPH oxidase components. We conclude the following. 1) The p22(phox) subunit of cytochrome b(559) serves as an anchor for both p47(phox) and p67(phox). 2) p47(phox) binds not only to the proline-rich region, located at residues 151-160 in the cytosolic C terminus of p22(phox), but also to a domain (residues 51-63) located on a loop exposed to the cytosol. 3) p67(phox) shares with p47(phox) the ability to bind to the proline-rich region (residues 151-160) and also binds to two additional domains, in the cytosolic loop (residues 81-91) and at the start of the cytosolic tail (residues 111-115). 4) The binding affinity of p67(phox) for p22(phox) peptides is lower than that of p47(phox). 5) Binding of both p47(phox) and p67(phox) to proline-rich p22(phox) peptides occurs in the absence of an anionic amphiphile. A revised membrane topology model of p22(phox) is proposed, the core of which is the presence of a functionally important cytosolic loop (residues 51-91).


Subject(s)
Cytochrome b Group/chemistry , Membrane Transport Proteins , NADPH Dehydrogenase/chemistry , NADPH Oxidases/chemistry , Phosphoproteins/chemistry , Photosystem II Protein Complex , Amino Acid Sequence , Animals , COS Cells , Cell Membrane/metabolism , Cell-Free System , Cytosol/metabolism , Dose-Response Relationship, Drug , Guinea Pigs , Inhibitory Concentration 50 , Ions , Molecular Sequence Data , NADPH Oxidases/metabolism , Peptide Library , Peptides/chemistry , Phagocytosis , Protein Binding , Protein Structure, Tertiary , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...