Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ScientificWorldJournal ; 2014: 898323, 2014.
Article in English | MEDLINE | ID: mdl-24672387

ABSTRACT

Aliphatic amines, including methylamine, are air-pollutants, due to their intensive use in industry and the natural degradation of proteins, amino acids, and other nitrogen-containing compounds in biological samples. It is necessary to develop systems for removal of methylamine from the air, since airborne methylamine has a negative effect on human health. The primary amine oxidase (primary amine : oxygen oxidoreductase (deaminating) or amine oxidase, AMO; EC 1.4.3.21), a copper-containing enzyme from the thermotolerant yeast Hansenula polymorpha which was overexpressed in baker's yeast Saccharomyces cerevisiae, was tested for its ability to oxidize airborne methylamine. A continuous fluidized bed bioreactor (CFBR) was designed to enable bioconversion of airborne methylamine by AMO immobilized in calcium alginate (CA) beads. The results demonstrated that the bioreactor with immobilized AMO eliminates nearly 97% of the airborne methylamine. However, the enzymatic activity of AMO causes formation of formaldehyde. A two-step bioconversion process was therefore proposed. In the first step, airborne methylamine was fed into a CFBR which contained immobilized AMO. In the second step, the gas flow was passed through another CFBR, with alcohol oxidase from the yeast H. polymorpha immobilized in CA, in order to decompose the formaldehyde formed in the first step. The proposed system provided almost total elimination of the airborne methylamine and the formaldehyde.


Subject(s)
Air Pollutants/metabolism , Amine Oxidase (Copper-Containing)/metabolism , Methylamines/metabolism , Pichia/metabolism , Amine Oxidase (Copper-Containing)/genetics , Amine Oxidase (Copper-Containing)/isolation & purification , Biodegradation, Environmental , Cloning, Molecular , Enzymes, Immobilized/metabolism , Gene Expression , Gene Order , Genetic Vectors , Pichia/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
2.
Materials (Basel) ; 7(2): 1055-1068, 2014 Feb 11.
Article in English | MEDLINE | ID: mdl-28788499

ABSTRACT

A laboratory prototype of a microcomputer-based analyzer was developed for quantitative determination of formaldehyde in liquid samples, based on catalytic chemosensing elements. It was shown that selectivity for the target analyte could be increased by modulating the working electrode potential. Analytical parameters of three variants of the amperometric analyzer that differed in the chemical structure/configuration of the working electrode were studied. The constructed analyzer was tested on wastewater solutions that contained formaldehyde. A simple low-cost biosensor was developed for semi-quantitative detection of airborne formaldehyde in concentrations exceeding the threshold level. This biosensor is based on a change in the color of a solution that contains a mixture of alcohol oxidase from the yeast Hansenula polymorpha, horseradish peroxidase and a chromogen, following exposure to airborne formaldehyde. The solution is enclosed within a membrane device, which is permeable to formaldehyde vapors. The most efficient and sensitive biosensor for detecting formaldehyde was the one that contained alcohol oxidase with an activity of 1.2 U·mL-1. The biosensor requires no special instrumentation and enables rapid visual detection of airborne formaldehyde at concentrations, which are hazardous to human health.

3.
J Biotechnol ; 153(3-4): 138-44, 2011 May 20.
Article in English | MEDLINE | ID: mdl-21504769

ABSTRACT

Formaldehyde (FA)-containing indoor air has a negative effect on human health and should be removed by intensive ventilation or by catalytic conversion to non-toxic products. FA can be oxidized by alcohol oxidase (AOX) taking part in methanol metabolism of methylotrophic yeasts. In the present work, AOX isolated from a Hansenula polymorpha C-105 mutant (gcr1 catX) overproducing this enzyme in glucose medium, was tested for its ability to oxidize airborne FA. A continuous fluidized bed bioreactor (FBBR) was designed to enable an effective bioconversion of airborne FA by AOX or by permeabilized mutant H. polymorpha C-105 cells immobilized in calcium alginate beads. The immobilized AOX having a specific activity of 6-8 U mg⁻¹ protein was shown to preserve 85-90% of the initial activity. The catalytic parameters of the immobilized enzyme were practically the same as for the free enzyme (k(cat)/K(m) was 2.35×10³ M⁻¹ s⁻¹ vs 2.89×10³ M⁻¹ s⁻¹, respectively). The results showed that upon bubbling of air containing from 0.3 up to 18.5 ppm FA through immobilized AOX in the range of 1.3-26.6 U g⁻¹ of the gel resulted in essential decrease of FA concentration in the outlet gas phase (less than 0.02-0.03 ppm, i.e. 10-fold less than the threshold limit value). It was also demonstrated that a FBBR with immobilized permeabilized C-105 cells provided more than 90% elimination of airborne FA. The process was monitored by a specially constructed enzymatic amperometric biosensor based on FA oxidation by NAD+ and glutathione-dependent formaldehyde dehydrogenase from the recombinant H. polymorpha Tf 11-6 strain.


Subject(s)
Air Pollutants/isolation & purification , Alcohol Oxidoreductases/metabolism , Bioreactors/microbiology , Enzymes, Immobilized/metabolism , Formaldehyde/isolation & purification , Pichia/enzymology , Air Pollutants/analysis , Air Pollutants/metabolism , Alcohol Oxidoreductases/chemistry , Alginates/chemistry , Biosensing Techniques , Environmental Restoration and Remediation , Enzymes, Immobilized/chemistry , Formaldehyde/analysis , Formaldehyde/metabolism , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Kinetics
4.
Curr Microbiol ; 61(3): 176-83, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20127334

ABSTRACT

The present study reports a simple rapid method for isolating the zinc-containing metalloprotease camelysin from Bacillus thuringiensis subsp. israelensis (Bti) by extraction from intact bacterial cells with egg L-alpha-phosphatidylcholine containing monolamellar liposomes, followed by separation on a sucrose gradient. Characterization of the isolated camelysin revealed a molecular weight of 23 kDa and a pI of 6.2. The camelysin exhibited maximal activity against the substrate azocasein at a temperature of 37 degrees C and pH 7.5. However, the enzyme's activity remained high also at basic pH values (8-10). In a rich growth medium (LB), camelysin appeared at the late logarithmic phase of Bti growth and reached its maximum in the stationary phase. Camelysin was shown to activate the protoxins Cyt1Aa and Cyt2Ba produced by Bti. The hemolytic activity of Cyt1Aa increased from 40 to 70% and that of Cyt2Ba from 6 to 50% in the presence of 50% (w/w) camelysin. It is concluded that these protoxins can be activated not only by insect gut proteases, but also by the endogeneous metalloprotease camelysin of the Bti bacterium.


Subject(s)
Bacillus thuringiensis/enzymology , Metalloendopeptidases/isolation & purification , Metalloendopeptidases/metabolism , Amino Acid Sequence , Bacillus thuringiensis Toxins , Bacterial Proteins/metabolism , Caseins/metabolism , Centrifugation, Density Gradient/methods , Culture Media/chemistry , Endotoxins/metabolism , Enzyme Stability , Gene Expression Profiling , Hemolysin Proteins/metabolism , Hydrogen-Ion Concentration , Isoelectric Point , Liposomes/isolation & purification , Metalloendopeptidases/chemistry , Molecular Sequence Data , Molecular Weight , Sequence Alignment , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...