Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 28(9): 094007, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26871256

ABSTRACT

The electronic structure of inorganic semiconductor interfaces functionalized with extended π-conjugated organic molecules can be strongly influenced by localized gap states or point defects, often present at low concentrations and hard to identify spectroscopically. At the same time, in transparent conductive oxides such as ZnO, the presence of these gap states conveys the desirable high conductivity necessary for function as electron-selective interlayer or electron collection electrode in organic optoelectronic devices. Here, we report on the direct spectroscopic detection of a donor state within the band gap of highly conductive zinc oxide by two-photon photoemission spectroscopy. We show that adsorption of the prototypical organic acceptor C60 quenches this state by ground-state charge transfer, with immediate consequences on the interfacial energy level alignment. Comparison with computational results suggests the identity of the gap state as a near-surface-confined oxygen vacancy.

2.
Adv Mater ; 28(20): 3960-5, 2016 05.
Article in English | MEDLINE | ID: mdl-26596518

ABSTRACT

Electronic coupling and ground-state charge transfer at the C60 /ZnO hybrid interface is shown to localize carriers in the C60 phase. This effect, revealed by resonant X-ray photoemission, arises from interfacial hybridization between C60 and ZnO. Such localization at carrier-selective electrodes and interlayers may lead to severely reduced carrier harvesting efficiencies and increased recombination rates in organic electronic devices.

3.
Langmuir ; 31(20): 5603-13, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25924006

ABSTRACT

Self-assembled monolayers (SAMs) of phosphonic acids (PAs) on transparent conductive oxide (TCO) surfaces can facilitate improvement in TCO/organic semiconductor interface properties. When ordered PA SAMs are formed on oxide substrates, interface dipole and electronic structure are affected by the functional group properties, orientation, and binding modes of the modifiers. Choosing octylphosphonic acid (OPA), F13-octylphosphonic acid (F13OPA), pentafluorophenyl phosphonic acid (F5PPA), benzyl phosphonic acid (BnPA), and pentafluorobenzyl phosphonic acid (F5BnPA) as a representative group of modifiers, we report polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) of binding and molecular orientation on indium-doped zinc oxide (IZO) substrates. Considerable variability in molecular orientation and binding type is observed with changes in PA functional group. OPA exhibits partially disordered alkyl chains but on average the chain axis is tilted ∼57° from the surface normal. F13OPA tilts 26° with mostly tridentate binding. The F5PPA ring is tilted 23° from the surface normal with a mixture of bidentate and tridentate binding; the BnPA ring tilts 31° from normal with a mixture of bidentate and tridentate binding, and the F5BnPA ring tilts 58° from normal with a majority of bidentate with some tridenate binding. These trends are consistent with what has been observed previously for the effects of fluorination on orientation of phosphonic acid modifiers. These results from PM-IRRAS are correlated with recent results on similar systems from near-edge X-ray absorption fine structure (NEXAFS) and density functional theory (DFT) calculations. Overall, these results indicate that both surface binding geometry and intermolecular interactions play important roles in dictating the orientation of PA modifiers on TCO surfaces. This work also establishes PM-IRRAS as a routine method for SAM orientation determination on complex oxide substrates.

4.
Adv Mater ; 26(27): 4711-6, 2014 Jul 16.
Article in English | MEDLINE | ID: mdl-24830796

ABSTRACT

The electronic structure of the hybrid interface between ZnO and the prototypical organic semiconductor PTCDI is investigated via a combination of ultraviolet and X-ray photoelectron spectroscopy (UPS/XPS) and density functional theory (DFT) calculations. The interfacial electronic interactions lead to a large interface dipole due to substantial charge transfer from ZnO to 3,4,9,10-perylenetetracarboxylicdiimide (PTCDI), which can be properly described only when accounting for surface defects that confer ZnO its n-type properties.


Subject(s)
Electrons , Imides/chemistry , Perylene/analogs & derivatives , Semiconductors , Zinc Oxide/chemistry , Electron Transport , Models, Molecular , Molecular Conformation , Perylene/chemistry , Surface Properties
5.
Rev Sci Instrum ; 84(5): 053905, 2013 May.
Article in English | MEDLINE | ID: mdl-23742564

ABSTRACT

The Seebeck coefficient is a key indicator of the majority carrier type (electrons or holes) in a material. The recent trend toward the development of combinatorial materials research methods has necessitated the development of a new high-throughput approach to measuring the Seebeck coefficient at spatially distinct points across any sample. The overall strategy of the high-throughput experiments is to quickly identify the region of interest on the sample at some expense of accuracy, and then study this region by more conventional techniques. The instrument for spatially resolved Seebeck coefficient measurements reported here relies on establishing a temperature difference across the entire compositionally graded thin-film and consecutive mapping of the resulting voltage as a function of position, which facilitates the temperature-dependent measurements up to 400 °C. The results of the designed instrument are verified at ambient temperature to be repeatable over 10 identical samples and accurate to within 10% versus conventional Seebeck coefficient measurements over the -100 to +150 µV/K range using both n-type and p-type conductive oxides as test cases. The developed instrument was used to determine the sign of electrical carriers of compositionally graded Zn-Co-O and Ni-Co-O libraries prepared by combinatorial sputtering. As a result of this study, both cobalt-based materials were determined to have p-type conduction over a broad single-phase region of chemical compositions and small variation of the Seebeck coefficient over the entire investigated range of compositions and temperature.

6.
Langmuir ; 29(7): 2166-74, 2013 Feb 19.
Article in English | MEDLINE | ID: mdl-23379837

ABSTRACT

Self-assembled monolayers (SAMs) of dipolar phosphonic acids can tailor the interface between organic semiconductors and transparent conductive oxides. When used in optoelectronic devices such as organic light emitting diodes and solar cells, these SAMs can increase current density and photovoltaic performance. The molecular ordering and conformation adopted by the SAMs determine properties such as work function and wettability at these critical interfaces. We combine angle-dependent near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) to determine the molecular orientations of a model phenylphosphonic acid on indium zinc oxide, and correlate the resulting values with density functional theory (DFT). We find that the SAMs are surprisingly well-oriented, with the phenyl ring adopting a well-defined tilt angle of 12-16° from the surface normal. We find quantitative agreement between the two experimental techniques and density functional theory calculations. These results not only provide a detailed picture of the molecular structure of a technologically important class of SAMs, but also resolve a long-standing ambiguity regarding the vibrational-mode assignments for phosphonic acids on oxide surfaces, thus improving the utility of PM-IRRAS for future studies.

7.
Langmuir ; 29(12): 3935-42, 2013 Mar 26.
Article in English | MEDLINE | ID: mdl-23421597

ABSTRACT

We report a rapid method of depositing phosphonic acid molecular groups onto conductive metal oxide surfaces. Solutions of pentafluorobenzyl phosphonic acid (PFBPA) were deposited on indium tin oxide, indium zinc oxide, nickel oxide, and zinc oxide by spray coating substrates heated to temperatures between 25 and 150 °C using a 60 s exposure time. Comparisons of coverage and changes in work function were made to the more conventional dip-coating method utilizing a 1 h exposure time. The data show that the work function shifts and surface coverage by the phosphonic acid were similar to or greater than those obtained by the dip-coating method. When the deposition temperature was increased, the magnitude of the surface coverage and work function shift was also found to increase. The rapid exposure of the spray coating was found to result in less etching of zinc-containing oxides than the dip-coating method. Bulk heterojunction solar cells made of polyhexylthiophene (P3HT) and bis-indene-C60 (ICBA) were tested with PFBPA dip and spray-modified ITO substrates as well as poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS)-modified ITO. The spray-modified ITO solar cells showed a similar open circuit voltage (VOC) and fill factor (FF) and a less than 5% lower short circuit current density (JSC) and power conversion efficiency (PCE) than the dip- and PEDOT:PSS-modified ITO. These results demonstrate a potential path to a scalable method to deposit phosphonic acid surface modifiers on metal oxides while overcoming the limitations of other techniques that require long exposure and post-processing times.

SELECTION OF CITATIONS
SEARCH DETAIL
...