Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122023 Nov 21.
Article in English | MEDLINE | ID: mdl-37988407

ABSTRACT

Pancreatic cancer is one of the deadliest cancer types with poor treatment options. Better detection of early symptoms and relevant disease correlations could improve pancreatic cancer prognosis. In this retrospective study, we used symptom and disease codes (ICD-10) from the Danish National Patient Registry (NPR) encompassing 6.9 million patients from 1994 to 2018,, of whom 23,592 were diagnosed with pancreatic cancer. The Danish cancer registry included 18,523 of these patients. To complement and compare the registry diagnosis codes with deeper clinical data, we used a text mining approach to extract symptoms from free text clinical notes in electronic health records (3078 pancreatic cancer patients and 30,780 controls). We used both data sources to generate and compare symptom disease trajectories to uncover temporal patterns of symptoms prior to pancreatic cancer diagnosis for the same patients. We show that the text mining of the clinical notes was able to complement the registry-based symptoms by capturing more symptoms prior to pancreatic cancer diagnosis. For example, 'Blood pressure reading without diagnosis', 'Abnormalities of heartbeat', and 'Intestinal obstruction' were not found for the registry-based analysis. Chaining symptoms together in trajectories identified two groups of patients with lower median survival (<90 days) following the trajectories 'Cough→Jaundice→Intestinal obstruction' and 'Pain→Jaundice→Abnormal results of function studies'. These results provide a comprehensive comparison of the two types of pancreatic cancer symptom trajectories, which in combination can leverage the full potential of the health data and ultimately provide a fuller picture for detection of early risk factors for pancreatic cancer.


Pancreatic cancer is one of the deadliest cancer types. Scientists predict it will become the second largest cause of cancer-related deaths in 2030. It has few or no symptoms at early stages and often goes undetected for an extended period. As a result, patients are often diagnosed at an advanced stage when they have few treatment options and lower survival rates. Only 11 percent of patients with pancreatic cancer survive five years past their diagnosis. Earlier detection and surgery to remove the tumor increase patient survival to 42% at five years. Those who undergo surgery at the earliest stage have an 84% survival rate at five years. Developing ways to screen for and detect pancreatic cancer early could improve patient survival. Identifying early symptoms is critical. So far, studies show links between weight loss, abdominal pain, lower back pain, and new-onset diabetes and pancreatic cancer. But clinicians often overlook these symptoms or do not associate them with cancer. National health registries may be data sources that scientists can use to zoom in on early pancreatic symptoms and create alerts for clinicians. Hjaltelin, Novitski et al. identified potential pancreatic cancer symptoms using patient registry data and electronic health records. Hjaltelin, Novitski et al. extracted potential pancreatic cancer-related disease or symptom trajectories from 7 million patients listed in the Danish National Patient Registry. They also scoured clinical notes in 34,000 patients' electronic health records for symptoms. The electronic health records yielded more promising symptoms than the registry. But both data sources produced complementary information. The analysis showed that some symptoms, like jaundice, were associated with higher survival rates because they may lead to earlier diagnosis. The data so far suggest that symptoms leading up to a pancreatic cancer diagnosis may be nonspecific and not occur in a particular order. As the cancer progresses, symptoms may become more specific and severe. Further assessment of the study's results is necessary. Tools like artificial intelligence or advanced text mining may allow scientists identify more definitive early symptom trajectories and help clinicians identify patients earlier.


Subject(s)
Jaundice , Pancreatic Neoplasms , Humans , Electronic Health Records , Retrospective Studies , Routinely Collected Health Data , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/epidemiology , Denmark/epidemiology , Pancreatic Neoplasms
2.
Epilepsia ; 64(10): 2750-2760, 2023 10.
Article in English | MEDLINE | ID: mdl-37548470

ABSTRACT

OBJECTIVE: Combining population-based health registries and electronic health records offers the opportunity to create large, phenotypically detailed patient cohorts of high quality. In this study, we used text mining of clinical notes to confirm International Classification of Diseases, 10th Revision (ICD-10)-registered epilepsy diagnoses and classify patients according to focal and generalized epilepsy types. METHODS: Using the Danish National Patient Registry, we identified patients who between 2006 and 2016 received an ICD-10 diagnosis of epilepsy. To validate the epilepsy diagnosis and stratify patients into focal and generalized epilepsy types, we constructed dictionaries for text mining-based extraction of clinical notes. Two physicians manually reviewed the clinical notes for a total of 527 patients and assigned epilepsy diagnoses, which were compared with the text-mined diagnoses. RESULTS: We identified 23 632 patients with an ICD-10 diagnosis of epilepsy, of whom 50% were registered with an unspecified epilepsy diagnosis. In total, 11 211 patients were considered likely to have epilepsy by text mining, with an F1 measure ranging from 82% to 90%. Manual review of the electronic health records for 310 patients revealed a false discovery rate of 29%. This rate was decreased to 4% by the text mining algorithm. The weighted average F1 measure for text mining-assigned epilepsy types was 79% (82% for focal and 76% for generalized epilepsy). Text mining successfully assigned a focal or generalized epilepsy type to 92% of the text mining-eligible patients registered with unspecified epilepsy. SIGNIFICANCE: Text mining of electronic health records can be used to establish a patient cohort with much higher likelihood of having a diagnosis of epilepsy and a focal or generalized epilepsy type compared to the cohort created from ICD-10 epilepsy codes alone. We believe the concept will be essential for future genome-wide and phenome-wide association studies and subsequently the development of precision medicine for epilepsy patients.


Subject(s)
Epilepsy, Generalized , Epilepsy , Humans , Electronic Health Records , Epilepsy/diagnosis , Data Mining , Algorithms
3.
PLoS Comput Biol ; 19(8): e1011403, 2023 08.
Article in English | MEDLINE | ID: mdl-37590326

ABSTRACT

Novel biomarkers are key to addressing the ongoing pandemic of type 2 diabetes mellitus. While new technologies have improved the potential of identifying such biomarkers, at the same time there is an increasing need for informed prioritization to ensure efficient downstream verification. We have built BALDR, an automated pipeline for biomarker comparison and prioritization in the context of diabetes. BALDR includes protein, gene, and disease data from major public repositories, text-mining data, and human and mouse experimental data from the IMI2 RHAPSODY consortium. These data are provided as easy-to-read figures and tables enabling direct comparison of up to 20 biomarker candidates for diabetes through the public website https://baldr.cpr.ku.dk.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Animals , Mice , Biomarkers , Data Mining , Pandemics , Internet
4.
BMC Genom Data ; 24(1): 30, 2023 05 27.
Article in English | MEDLINE | ID: mdl-37244984

ABSTRACT

OBJECTIVES: Allele counts of sequence variants obtained by whole genome sequencing (WGS) often play a central role in interpreting the results of genetic and genomic research. However, such variant counts are not readily available for individuals in the Danish population. Here, we present a dataset with allele counts for sequence variants (single nucleotide variants (SNVs) and indels) identified from WGS of 8,671 (5,418 females) individuals from the Danish population. The data resource is based on WGS data from three independent research projects aimed at assessing genetic risk factors for cardiovascular, psychiatric, and headache disorders. To enable the sharing of information on sequence variation in Danish individuals, we created summarized statistics on allele counts from anonymized data and made them available through the European Genome-phenome Archive (EGA, https://identifiers.org/ega. DATASET: EGAD00001009756 ) and in a dedicated browser, DanMAC5 (available at www.danmac5.dk ). The summary level data and the DanMAC5 browser provide insight into the allelic spectrum of sequence variants segregating in the Danish population, which is important in variant interpretation. DATA DESCRIPTION: Three WGS datasets with an average coverage of 30x were processed independently using the same quality control pipeline. Subsequently, we summarized, filtered, and merged allele counts to create a high-quality summary level dataset of sequence variants.


Subject(s)
Genome , Polymorphism, Single Nucleotide , Female , Humans , Polymorphism, Single Nucleotide/genetics , Whole Genome Sequencing/methods , Genomics , Denmark
5.
Nat Commun ; 11(1): 4952, 2020 10 02.
Article in English | MEDLINE | ID: mdl-33009368

ABSTRACT

We present the Danish Disease Trajectory Browser (DTB), a tool for exploring almost 25 years of data from the Danish National Patient Register. In the dataset comprising 7.2 million patients and 122 million admissions, users can identify diagnosis pairs with statistically significant directionality and combine them to linear disease trajectories. Users can search for one or more disease codes (ICD-10 classification) and explore disease progression patterns via an array of functionalities. For example, a set of linear trajectories can be merged into a disease trajectory network displaying the entire multimorbidity spectrum of a disease in a single connected graph. Using data from the Danish Register for Causes of Death mortality is also included. The tool is disease-agnostic across both rare and common diseases and is showcased by exploring multimorbidity in Down syndrome (ICD-10 code Q90) and hypertension (ICD-10 code I10). Finally, we show how search results can be customized and exported from the browser in a format of choice (i.e. JSON, PNG, JPEG and CSV).


Subject(s)
Disease Progression , Software , Algorithms , Denmark , Humans , Time Factors
6.
Bioinformatics ; 35(24): 5391-5392, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31329252

ABSTRACT

MOTIVATION: Adverse outcome pathway (AOP) is a toxicological concept proposed to provide a mechanistic representation of biological perturbation over different layers of biological organization. Although AOPs are by definition chemical-agnostic, many chemical stressors can putatively interfere with one or several AOPs and such information would be relevant for regulatory decision-making. RESULTS: With the recent development of AOPs networks aiming to facilitate the identification of interactions among AOPs, we developed a stressor-AOP network (sAOP). Using the 'cytotoxitiy burst' (CTB) approach, we mapped bioactive compounds from the ToxCast data to a list of AOPs reported in AOP-Wiki database. With this analysis, a variety of relevant connections between chemicals and AOP components can be identified suggesting multiple effects not observed in the simplified 'one-biological perturbation to one-adverse outcome' model. The results may assist in the prioritization of chemicals to assess risk-based evaluations in the context of human health. AVAILABILITY AND IMPLEMENTATION: sAOP is available at http://saop.cpr.ku.dk. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Adverse Outcome Pathways , Databases, Factual , Humans , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...