Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Res Sq ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38883782

ABSTRACT

Synovial Sarcoma (SS) is driven by the SS18::SSX fusion oncoprotein and is ultimately refractory to therapeutic approaches. SS18::SSX alters ATP-dependent chromatin remodeling BAF (mammalian SWI/SNF) complexes, leading to the degradation of canonical (cBAF) complex and amplified presence of an SS18::SSX-containing non-canonical BAF (ncBAF or GBAF) that drives an SS-specific transcription program and tumorigenesis. We demonstrate that SS18::SSX activates the SUMOylation program and SSs are sensitive to the small molecule SAE1/2 inhibitor, TAK-981. Mechanistically, TAK-981 de-SUMOylates the cBAF subunit SMARCE1, stabilizing and restoring cBAF on chromatin, shifting away from SS18::SSX-ncBAF-driven transcription, associated with DNA damage and cell death and resulting in tumor inhibition across both human and mouse SS tumor models. TAK-981 synergized with cytotoxic chemotherapy through increased DNA damage, leading to tumor regression. Targeting the SUMOylation pathway in SS restores cBAF complexes and blocks the SS18::SSX-ncBAF transcriptome, identifying a therapeutic vulnerability in SS, positioning the in-clinic TAK-981 to treat SS.

2.
bioRxiv ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38712286

ABSTRACT

Synovial Sarcoma (SS) is driven by the SS18::SSX fusion oncoprotein. and is ultimately refractory to therapeutic approaches. SS18::SSX alters ATP-dependent chromatin remodeling BAF (mammalian SWI/SNF) complexes, leading to the degradation of canonical (cBAF) complex and amplified presence of an SS18::SSX-containing non-canonical BAF (ncBAF or GBAF) that drives an SS-specific transcription program and tumorigenesis. We demonstrate that SS18::SSX activates the SUMOylation program and SSs are sensitive to the small molecule SAE1/2 inhibitor, TAK-981. Mechanistically, TAK-981 de-SUMOylates the cBAF subunit SMARCE1, stabilizing and restoring cBAF on chromatin, shifting away from SS18::SSX-ncBAF-driven transcription, associated with DNA damage and cell death and resulting in tumor inhibition across both human and mouse SS tumor models. TAK-981 synergized with cytotoxic chemotherapy through increased DNA damage, leading to tumor regression. Targeting the SUMOylation pathway in SS restores cBAF complexes and blocks the SS18::SSX-ncBAF transcriptome, identifying a therapeutic vulnerability in SS, positioning the in-clinic TAK-981 to treat SS.

3.
Commun Biol ; 6(1): 698, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37420095

ABSTRACT

Lack of proper nutrition has important consequences for the physiology of all organisms, and nutritional status can affect immunity, based on many studies in terrestrial animals. Here we show a positive correlation between nutrition and immunity in the sea anemone Nematostella vectensis. Gene expression profiling of adult anemones shows downregulation of genes involved in nutrient metabolism, cellular respiration, and immunity in starved animals. Starved adult anemones also have reduced protein levels and activity of immunity transcription factor NF-κB. Starved juvenile anemones have increased sensitivity to bacterial infection and also have lower NF-κB protein levels, as compared to fed controls. Weighted Gene Correlation Network Analysis (WGCNA) is used to identify significantly correlated gene networks that were downregulated with starvation. These experiments demonstrate a correlation between nutrition and immunity in an early diverged marine metazoan, and the results have implications for the survival of marine organisms as they encounter changing environments.


Subject(s)
NF-kappa B , Sea Anemones , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Sea Anemones/genetics , Sea Anemones/metabolism , Gene Expression Regulation , Gene Expression Profiling
4.
Nat Commun ; 14(1): 913, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36808133

ABSTRACT

Although >90% of somatic mutations reside in non-coding regions, few have been reported as cancer drivers. To predict driver non-coding variants (NCVs), we present a transcription factor (TF)-aware burden test based on a model of coherent TF function in promoters. We apply this test to NCVs from the Pan-Cancer Analysis of Whole Genomes cohort and predict 2555 driver NCVs in the promoters of 813 genes across 20 cancer types. These genes are enriched in cancer-related gene ontologies, essential genes, and genes associated with cancer prognosis. We find that 765 candidate driver NCVs alter transcriptional activity, 510 lead to differential binding of TF-cofactor regulatory complexes, and that they primarily impact the binding of ETS factors. Finally, we show that different NCVs within a promoter often affect transcriptional activity through shared mechanisms. Our integrated computational and experimental approach shows that cancer NCVs are widespread and that ETS factors are commonly disrupted.


Subject(s)
Neoplasms , Humans , Mutation , Neoplasms/genetics , Binding Sites/genetics , Transcription Factors/metabolism , Gene Expression Regulation
5.
Nat Commun ; 14(1): 688, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36755019

ABSTRACT

A proper understanding of disease etiology will require longitudinal systems-scale reconstruction of the multitiered architecture of eukaryotic signaling. Here we combine state-of-the-art data acquisition platforms and bioinformatics tools to devise PAMAF, a workflow that simultaneously examines twelve omics modalities, i.e., protein abundance from whole-cells, nucleus, exosomes, secretome and membrane; N-glycosylation, phosphorylation; metabolites; mRNA, miRNA; and, in parallel, single-cell transcriptomes. We apply PAMAF in an established in vitro model of TGFß-induced epithelial to mesenchymal transition (EMT) to quantify >61,000 molecules from 12 omics and 10 timepoints over 12 days. Bioinformatics analysis of this EMT-ExMap resource allowed us to identify; -topological coupling between omics, -four distinct cell states during EMT, -omics-specific kinetic paths, -stage-specific multi-omics characteristics, -distinct regulatory classes of genes, -ligand-receptor mediated intercellular crosstalk by integrating scRNAseq and subcellular proteomics, and -combinatorial drug targets (e.g., Hedgehog signaling and CAMK-II) to inhibit EMT, which we validate using a 3D mammary duct-on-a-chip platform. Overall, this study provides a resource on TGFß signaling and EMT.


Subject(s)
Epithelial-Mesenchymal Transition , Hedgehog Proteins , Epithelial-Mesenchymal Transition/genetics , Hedgehog Proteins/metabolism , Epithelial Cells/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism
6.
Cell Genom ; 2(2)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35252945

ABSTRACT

Non-coding DNA variants (NCVs) impact gene expression by altering binding sites for regulatory complexes. New high-throughput methods are needed to characterize the impact of NCVs on regulatory complexes. We developed CASCADE (Customizable Approach to Survey Complex Assembly at DNA Elements), an array-based high-throughput method to profile cofactor (COF) recruitment. CASCADE identifies DNA-bound transcription factor-cofactor (TF-COF) complexes in nuclear extracts and quantifies the impact of NCVs on their binding. We demonstrate CASCADE sensitivity in characterizing condition-specific recruitment of COFs p300 and RBBP5 (MLL subunit) to the CXCL10 promoter in lipopolysaccharide (LPS)-stimulated human macrophages and quantify the impact of all possible NCVs. To demonstrate applicability to NCV screens, we profile TF-COF binding to ~1,700 single-nucleotide polymorphism quantitative trait loci (SNP-QTLs) in human macrophages and identify perturbed ETS domain-containing complexes. CASCADE will facilitate high-throughput testing of molecular mechanisms of NCVs for diverse biological applications.

7.
Commun Biol ; 4(1): 1404, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34916615

ABSTRACT

We provide a functional characterization of transcription factor NF-κB in protists and provide information about the evolution and diversification of this biologically important protein. We characterized NF-κB in two protists using phylogenetic, cellular, and biochemical techniques. NF-κB of the holozoan Capsaspora owczarzaki (Co) has an N-terminal DNA-binding domain and a C-terminal Ankyrin repeat (ANK) domain, and its DNA-binding specificity is more similar to metazoan NF-κB proteins than to Rel proteins. Removal of the ANK domain allows Co-NF-κB to enter the nucleus, bind DNA, and activate transcription. However, C-terminal processing of Co-NF-κB is not induced by IκB kinases in human cells. Overexpressed Co-NF-κB localizes to the cytoplasm in Co cells. Co-NF-κB mRNA and DNA-binding levels differ across three Capsaspora life stages. RNA-sequencing and GO analyses identify possible gene targets of Co-NF-κB. Three NF-κB-like proteins from the choanoflagellate Acanthoeca spectabilis (As) contain conserved Rel Homology domain sequences, but lack C-terminal ANK repeats. All three As-NF-κB proteins constitutively enter the nucleus of cells, but differ in their DNA-binding abilities, transcriptional activation activities, and dimerization properties. These results provide a basis for understanding the evolutionary origins of this key transcription factor and could have implications for the origins of regulated immunity in higher taxa.


Subject(s)
Choanoflagellata/genetics , Evolution, Molecular , NF-kappa B/genetics , Protozoan Proteins/genetics , Transcription Factors/genetics , Choanoflagellata/metabolism , NF-kappa B/metabolism , Protozoan Proteins/metabolism , Species Specificity , Transcription Factors/metabolism
8.
Methods Mol Biol ; 2366: 43-66, 2021.
Article in English | MEDLINE | ID: mdl-34236632

ABSTRACT

Nuclear factor-kappa B (NF-κB) transcription factors coordinate gene expression in response to a broad array of cellular signals. In vertebrates, there are five NF-κB proteins (c-Rel, RelA/p65, RelB, p50, and p52) that can form various dimeric combinations exhibiting both common and dimer-specific DNA-binding specificity. In this chapter, we describe the use of the nuclear extract protein-binding microarray (nextPBM), a high-throughput method to characterize the DNA binding of transcription factors present in cell nuclear extracts. NextPBMs allow for sensitive analysis of the DNA binding of NF-κB dimers and their interactions with cell-specific cofactors.


Subject(s)
Protein Array Analysis , Animals , DNA/genetics , DNA/metabolism , NF-kappa B/metabolism , NF-kappa B p50 Subunit/genetics , NF-kappa B p50 Subunit/metabolism , Plant Extracts , Protein Binding , Signal Transduction , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism
9.
Dev Comp Immunol ; 104: 103559, 2020 03.
Article in English | MEDLINE | ID: mdl-31751628

ABSTRACT

Herein, we characterize transcription factor NF-κB from the demosponge Amphimedon queenslandica (Aq). Aq-NF-κB is most similar to NF-κB p100/p105 among vertebrate proteins, with an N-terminal DNA-binding domain, a C-terminal Ankyrin (ANK) repeat domain, and a DNA binding-site profile akin to human NF-κB proteins. Like mammalian NF-κB p100, C-terminal truncation allows nuclear translocation of Aq-NF-κB and increases its transcriptional activation activity. Expression of IκB kinases (IKKs) induces proteasome-dependent C-terminal processing of Aq-NF-κB in human cells, and processing requires C-terminal serines in Aq-NF-κB. Unlike NF-κB p100, C-terminal sequences of Aq-NF-κB do not inhibit its DNA-binding activity. Tissue of a black encrusting demosponge contains NF-κB site DNA-binding activity, as well as nuclear and processed NF-κB. Treatment of sponge tissue with LPS increases both DNA-binding activity and processing of NF-κB. A. queenslandica transcriptomes contain homologs to upstream NF-κB pathway components. This is first functional characterization of NF-κB in sponge, the most basal multicellular animal.


Subject(s)
Conserved Sequence/genetics , DNA-Binding Proteins/genetics , NF-kappa B/genetics , Porifera/immunology , Protein Domains/genetics , Animals , DNA-Binding Proteins/metabolism , Evolution, Molecular , Gene Expression Regulation , NF-kappa B/metabolism , Signal Transduction , Transcription, Genetic
10.
Nat Immunol ; 20(10): 1372-1380, 2019 10.
Article in English | MEDLINE | ID: mdl-31451789

ABSTRACT

In multicellular organisms, duplicated genes can diverge through tissue-specific gene expression patterns, as exemplified by highly regulated expression of RUNX transcription factor paralogs with apparent functional redundancy. Here we asked what cell-type-specific biologies might be supported by the selective expression of RUNX paralogs during Langerhans cell and inducible regulatory T cell differentiation. We uncovered functional nonequivalence between RUNX paralogs. Selective expression of native paralogs allowed integration of transcription factor activity with extrinsic signals, while non-native paralogs enforced differentiation even in the absence of exogenous inducers. DNA binding affinity was controlled by divergent amino acids within the otherwise highly conserved RUNT domain and evolutionary reconstruction suggested convergence of RUNT domain residues toward submaximal strength. Hence, the selective expression of gene duplicates in specialized cell types can synergize with the acquisition of functional differences to enable appropriate gene expression, lineage choice and differentiation in the mammalian immune system.


Subject(s)
Core Binding Factor alpha Subunits/genetics , Immune System/physiology , Langerhans Cells/physiology , Organ Specificity/genetics , T-Lymphocytes, Regulatory/physiology , Animals , Cell Differentiation , Cell Lineage , Conserved Sequence , Evolution, Molecular , Gene Duplication , Humans , Mammals , Signal Transduction , Transcriptome
11.
Nat Commun ; 10(1): 2514, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31175293

ABSTRACT

The type II nuclear receptors (NRs) function as heterodimeric transcription factors with the retinoid X receptor (RXR) to regulate diverse biological processes in response to endogenous ligands and therapeutic drugs. DNA-binding specificity has been proposed as a primary mechanism for NR gene regulatory specificity. Here we use protein-binding microarrays (PBMs) to comprehensively analyze the DNA binding of 12 NR:RXRα dimers. We find more promiscuous NR-DNA binding than has been reported, challenging the view that NR binding specificity is defined by half-site spacing. We show that NRs bind DNA using two distinct modes, explaining widespread NR binding to half-sites in vivo. Finally, we show that the current models of NR specificity better reflect binding-site activity rather than binding-site affinity. Our rich dataset and revised NR binding models provide a framework for understanding NR regulatory specificity and will facilitate more accurate analyses of genomic datasets.


Subject(s)
DNA/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Retinoid X Receptors/metabolism , DNA-Binding Proteins , Humans , Liver X Receptors , Mutagenesis, Site-Directed , Peroxisome Proliferator-Activated Receptors , Pregnane X Receptor , Receptors, Calcitriol , Receptors, Retinoic Acid , Receptors, Thyroid Hormone
12.
Nucleic Acids Res ; 47(6): e31, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30657937

ABSTRACT

High-throughput (HT) in vitro methods for measuring protein-DNA binding have become invaluable for characterizing transcription factor (TF) complexes and modeling gene regulation. However, current methods do not utilize endogenous proteins and, therefore, do not quantify the impact of cell-specific post-translational modifications (PTMs) and cooperative cofactors. We introduce the HT nextPBM (nuclear extract protein-binding microarray) approach to study DNA binding of native cellular TFs that accounts for PTMs and cell-specific cofactors. We integrate immune-depletion and phosphatase treatment steps into our nextPBM pipeline to characterize the impact of cofactors and phosphorylation on TF binding. We analyze binding of PU.1/SPI1 and IRF8 from human monocytes, delineate DNA-sequence determinants for their cooperativity, and show how PU.1 affinity correlates with enhancer status and the presence of cooperative and collaborative cofactors. We describe how nextPBMs, and our accompanying computational framework, can be used to discover cell-specific cofactors, screen for synthetic cooperative DNA elements, and characterize TF cooperativity.


Subject(s)
Cell Nucleus/chemistry , Gene Regulatory Networks , Protein Array Analysis/methods , Transcription Factors/analysis , Transcription Factors/metabolism , Cell Extracts/chemistry , Cell Nucleus/genetics , Cell Nucleus/metabolism , Gene Expression Regulation , HEK293 Cells , High-Throughput Screening Assays/methods , Humans , Nuclear Proteins/analysis , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Organ Specificity/genetics , Protein Binding , Protein Interaction Mapping/methods , Protein Interaction Maps , THP-1 Cells
13.
Nucleic Acids Res ; 46(5): 2509-2520, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29361124

ABSTRACT

Transcription factors IRF3, IRF5 and IRF7 (IRF3/5/7) have overlapping, yet distinct, roles in the mammalian response to pathogens. To examine the role that DNA-binding specificity plays in delineating IRF3/5/7-specific gene regulation we used protein-binding microarrays (PBMs) to characterize the DNA binding of IRF3/5/7 homodimers. We identified both common and dimer-specific DNA binding sites, and show that DNA-binding differences can translate into dimer-specific gene regulation. Central to the antiviral response, IRF3/5/7 regulate type I interferon (IFN) genes. We show that IRF3 and IRF7 bind to many interferon-stimulated response element (ISRE)-type sites in the virus-response elements (VREs) of IFN promoters. However, strikingly, IRF5 does not bind the VREs, suggesting evolutionary selection against IRF5 homodimer binding. Mutational analysis reveals a critical specificity-determining residue that inhibits IRF5 binding to the ISRE-variants present in the IFN gene promoters. Integrating PBM and reporter gene data we find that both DNA-binding affinity and affinity-independent mechanisms determine the function of DNA-bound IRF dimers, suggesting that DNA-based allostery plays a role in IRF binding site function. Our results provide new insights into the role and limitations of DNA-binding affinity in delineating IRF3/5/7-specific gene expression.


Subject(s)
Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factors/metabolism , Response Elements , Binding Sites , DNA/metabolism , Gene Expression Regulation , HEK293 Cells , Humans , Interferon Regulatory Factor-3/chemistry , Interferon Regulatory Factor-7/chemistry , Interferon Regulatory Factors/chemistry , Interferon Type I/genetics , Protein Array Analysis , Protein Multimerization
14.
Sci Rep ; 7(1): 16025, 2017 11 22.
Article in English | MEDLINE | ID: mdl-29167511

ABSTRACT

Transcription factor NF-κB plays a central role in immunity from fruit flies to humans, and NF-κB activity is altered in many human diseases. To investigate a role for NF-κB in immunity and disease on a broader evolutionary scale we have characterized NF-κB in a sea anemone (Exaiptasia pallida; called Aiptasia herein) model for cnidarian symbiosis and dysbiosis (i.e., "bleaching"). We show that the DNA-binding site specificity of Aiptasia NF-κB is similar to NF-κB proteins from a broad expanse of organisms. Analyses of NF-κB and IκB kinase proteins from Aiptasia suggest that non-canonical NF-κB processing is an evolutionarily ancient pathway, which can be reconstituted in human cells. In Aiptasia, NF-κB protein levels, DNA-binding activity, and tissue expression increase when loss of the algal symbiont Symbiodinium is induced by heat or chemical treatment. Kinetic analysis of NF-κB levels following loss of symbiosis show that NF-κB levels increase only after Symbiodinium is cleared. Moreover, introduction of Symbiodinium into naïve Aiptasia larvae results in a decrease in NF-κB expression. Our results suggest that Symbiodinium suppresses NF-κB in order to enable establishment of symbiosis in Aiptasia. These results are the first to demonstrate a link between changes in the conserved immune regulatory protein NF-κB and cnidarian symbiotic status.


Subject(s)
NF-kappa B/metabolism , Sea Anemones/metabolism , Animals , DNA/metabolism , Humans , Symbiosis/physiology
15.
PLoS Genet ; 12(7): e1006120, 2016 07.
Article in English | MEDLINE | ID: mdl-27414415

ABSTRACT

Dosage compensation is an essential process that equalizes transcript levels of X-linked genes between sexes by forming a domain of coordinated gene expression. Throughout the evolution of Diptera, many different X-chromosomes acquired the ability to be dosage compensated. Once each newly evolved X-chromosome is targeted for dosage compensation in XY males, its active genes are upregulated two-fold to equalize gene expression with XX females. In Drosophila melanogaster, the CLAMP zinc finger protein links the dosage compensation complex to the X-chromosome. However, the mechanism for X-chromosome identification has remained unknown. Here, we combine biochemical, genomic and evolutionary approaches to reveal that expansion of GA-dinucleotide repeats likely accumulated on the X-chromosome over evolutionary time to increase the density of CLAMP binding sites, thereby driving the evolution of dosage compensation. Overall, we present new insight into how subtle changes in genomic architecture, such as expansions of a simple sequence repeat, promote the evolution of coordinated gene expression.


Subject(s)
DNA-Binding Proteins/genetics , Dinucleotide Repeats , Dosage Compensation, Genetic , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , X Chromosome/genetics , Amino Acid Motifs , Animals , Binding Sites , Biological Evolution , DNA/chemistry , Female , Gene Dosage , Genes, X-Linked , Genetic Linkage , Genome, Insect , Male , Oligonucleotide Array Sequence Analysis , Sequence Analysis, DNA
16.
Science ; 351(6280): 1450-1454, 2016 Mar 25.
Article in English | MEDLINE | ID: mdl-27013732

ABSTRACT

Sequencing of exomes and genomes has revealed abundant genetic variation affecting the coding sequences of human transcription factors (TFs), but the consequences of such variation remain largely unexplored. We developed a computational, structure-based approach to evaluate TF variants for their impact on DNA binding activity and used universal protein-binding microarrays to assay sequence-specific DNA binding activity across 41 reference and 117 variant alleles found in individuals of diverse ancestries and families with Mendelian diseases. We found 77 variants in 28 genes that affect DNA binding affinity or specificity and identified thousands of rare alleles likely to alter the DNA binding activity of human sequence-specific TFs. Our results suggest that most individuals have unique repertoires of TF DNA binding activities, which may contribute to phenotypic variation.


Subject(s)
DNA-Binding Proteins/genetics , DNA/metabolism , Gene Expression Regulation , Genetic Diseases, Inborn/genetics , Transcription Factors/genetics , Base Sequence , Binding Sites , Computer Simulation , DNA-Binding Proteins/metabolism , Exome/genetics , Genetic Variation , Genome, Human , Humans , Mutation , Polymorphism, Single Nucleotide , Protein Array Analysis , Protein Binding , Sequence Analysis, DNA , Transcription Factors/metabolism
17.
Genesis ; 53(9): 573-582, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26177923

ABSTRACT

Grainyhead-like genes are part of a highly conserved gene family that play a number of roles in ectoderm development and maintenance in mammals. Here we identify a novel allele of Grhl2, cleft-face 3 (clft3), in a mouse line recovered from an ENU mutagenesis screen for organogenesis defects. Homozygous clft3 mutants have a number of phenotypes in common with other alleles of Grhl2. We note a significant effect of genetic background on the clft3 phenotype. One of these is a reduction in size of the telencephalon where we find abnormal patterns of neural progenitor mitosis and apoptosis in mutant brains. Interestingly, Grhl2 is not expressed in the developing forebrain, suggesting this is a survival factor for neural progenitors exerting a paracrine effect on the neural tissue from the overlying ectoderm where Grhl2 is highly expressed. genesis 53:573-582, 2015. © 2015 Wiley Periodicals, Inc.

18.
Methods Mol Biol ; 1280: 609-30, 2015.
Article in English | MEDLINE | ID: mdl-25736775

ABSTRACT

NF-κB transcription factors control a wide array of important cellular and organismal processes in eukaryotes. All NF-κB transcription factors bind to DNA target sites as dimers. In vertebrates, there are five NF-κB subunits, p50, p52, RelA (p65), c-Rel, and RelB, that can form almost all combinations of homodimers and heterodimers, which recognize distinct, but overlapping, target sequences. In this chapter, we describe the use of protein-binding microarrays (PBMs), a high-throughput method to measure the binding of proteins to different DNA sequences. PBM datasets allow for sensitive comparisons of NF-κB dimer DNA-binding differences and can aid in the computational and experimental prediction of NF-κB target genes.


Subject(s)
Binding Sites , DNA/genetics , DNA/metabolism , NF-kappa B/metabolism , Oligonucleotide Array Sequence Analysis/methods , Protein Binding
19.
Brief Funct Genomics ; 14(1): 17-29, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25431149

ABSTRACT

Protein-DNA binding is central to specificity in gene regulation, and methods for characterizing transcription factor (TF)-DNA binding remain crucial to studies of regulatory specificity. High-throughput (HT) technologies have revolutionized our ability to characterize protein-DNA binding by significantly increasing the number of binding measurements that can be performed. Protein-binding microarrays (PBMs) are a robust and powerful HT platform for studying DNA-binding specificity of TFs. Analysis of PBM-determined DNA-binding profiles has provided new insight into the scope and mechanisms of TF binding diversity. In this review, we focus specifically on the PBM technique and discuss its application to the study of TF specificity, in particular, the binding diversity of TF homologs and multi-protein complexes.


Subject(s)
Multiprotein Complexes/metabolism , Protein Array Analysis/methods , Transcription Factors/metabolism , Animals , DNA/metabolism , Humans , Protein Binding , Protein Isoforms/metabolism
20.
Mol Cell ; 55(4): 640-8, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-25042805

ABSTRACT

A major challenge in obtaining a full molecular description of evolutionary adaptation is to characterize how transcription factor (TF) DNA-binding specificity can change. To identify mechanisms of TF diversification, we performed detailed comparisons of yeast C2H2 ZF proteins with identical canonical recognition residues that are expected to bind the same DNA sequences. Unexpectedly, we found that ZF proteins can adapt to recognize new binding sites in a modular fashion whereby binding to common core sites remains unaffected. We identified two distinct mechanisms, conserved across multiple Ascomycota species, by which this molecular adaptation occurred. Our results suggest a route for TF evolution that alleviates negative pleiotropic effects by modularly gaining new binding sites. These findings expand our current understanding of ZF DNA binding and provide evidence for paralogous ZFs utilizing alternate modes of DNA binding to recognize unique sets of noncanonical binding sites.


Subject(s)
Ascomycota/metabolism , DNA, Fungal/genetics , DNA-Binding Proteins/metabolism , Fungal Proteins/genetics , Transcription Factors/metabolism , Zinc Fingers/physiology , Amino Acid Motifs , Ascomycota/classification , Ascomycota/genetics , Conserved Sequence , DNA-Binding Proteins/chemistry , Evolution, Molecular , Fungal Proteins/metabolism , Genome, Fungal , Zinc Fingers/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...