Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Open Vet J ; 14(3): 759-768, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38682147

ABSTRACT

Background: Poultry is one of the most prominent sources of Campylobacter jejuni, which is also a major means of transmission to people. Campylobacter jejuni contamination in chicken meat comes from chicken feces because it naturally exists in the intestines of chickens. Aim: The purpose of this study is to identify the antibiotic resistance patterns and genes of C. jejuni, which was found in chickens in Pasuruan, Indonesia. Methods: The samples used in this study were 200 contents of the small intestine of broiler chickens from 40 farms in Pasuruan Regency. The enriched sample was streaked on the selective media of modified charcoal cefoperazone deoxycholate agar containing the CCDA selective supplement. Antimicrobial susceptibility test utilizing the Kirby-Bauer diffusion test method in accordance with Clinical and Laboratory Standards Institute standards. The polymerase chain reaction (PCR) method was used to detect the (hipO), which encodes the C. jejuni strain, fluoroquinolone resistance (gyrA), beta-lactam resistance (blaOXA-61), and tetracycline resistance (tetO) genes. Results: The findings revealed a 14% (28/200) prevalence of C. jejuni in the small intestine of broiler chickens. These isolates showed high resistance to enrofloxacin (92.9%). All isolates (100%) were susceptible to amoxicillin-clavulanate. The PCR results showed all C. jejuni isolates (100%) detected the gyrA gene, 96.4% detected the blaOXA-61 gene, and 50% detected the tetO gene. Conclusion: The findings of antimicrobial resistance at a high level from the small intestine of broiler chickens illustrate the potential threat to human health. To lessen the effects now and in the future, coordinated and suitable action is needed, as well as steps to guarantee the poultry industry's economic survival and public health insurance.


Subject(s)
Anti-Bacterial Agents , Campylobacter Infections , Campylobacter jejuni , Chickens , Drug Resistance, Bacterial , Poultry Diseases , Animals , Campylobacter jejuni/drug effects , Campylobacter jejuni/genetics , Campylobacter jejuni/isolation & purification , Chickens/microbiology , Indonesia/epidemiology , Campylobacter Infections/veterinary , Campylobacter Infections/microbiology , Campylobacter Infections/epidemiology , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests/veterinary
2.
Vet World ; 14(10): 2782-2792, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34903940

ABSTRACT

BACKGROUND AND AIM: The coronavirus diseases-2019 (COVID-19) pandemic has caused a global lockdown, which has limited the mobility of the public, and thus, more time is spent with their pets. Unfortunately, many social media have blamed pet animals as a reservoir of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), the etiologic agent of COVID-19, triggering a panic abandonment of pets. However, no article has summarized the information regarding the role of pets as SARS-CoV-2 reservoirs. This study aimed to evaluate the role of pets as a reservoir of SARS-CoV-2 on the basis of research papers (i.e., animal model, surveillance, and case report) published in 2020. MATERIALS AND METHODS: The review was conducted using articles from the PubMed database in 2020, using the keywords "COVID-19 in domesticated animals," which were screened and analyzed. Only the data from research articles were mimicked and transformed to conduct a meta-analysis. The meta-analysis was conducted regarding the effects of inhabitation and viral shedding in pets. In this study, we used 95% confidence intervals. RESULTS: A total of 132 papers in PubMed were related to the keywords, whereas only 12 papers were appropriate to answer the dynamics of the role of pets as the reservoir for SARS-CoV-2. Seven studies indicated the potential of cat-cat (4/7), human-cat (2/7), and human-dog (1/7) SARS-CoV-2 transmission. No study proved the presence of cat-human transmission. Another study showed that comingling did not affect SARS-CoV-2 viral shedding among a cat and dog. Furthermore, the viral shedding of cats and dogs caused asymptomatic manifestations and generated neutralizing antibodies within a short period of time. CONCLUSION: SARS-CoV-2 transmission is present in domesticated animals, especially in pet cats and dogs, and transmission occurs between animals of the same species (cat-cat). The reverse zoonosis (zooanthroponosis) was found from human to cat/dog (comingled) with asymptomatic clinical signs due to the representation of neutralizing antibodies.

3.
Vet World ; 13(5): 865-871, 2020 May.
Article in English | MEDLINE | ID: mdl-32636580

ABSTRACT

BACKGROUND AND AIM: Antimicrobial resistance is a global problem caused by extensive utilization of antibiotics that promote gene resistant among bacteria, including Staphylococcus aureus. This study aimed to analyze the potential effects of celery (Apium graveolens) extract as an antioxidant and antimicrobial agent against methicillin-resistant S. aureus (MRSA), in vitro and in vivo. MATERIALS AND METHODS: Celery was extracted and tested against a MRSA isolate in vitro. The minimum inhibitory concentration (MIC) against MRSA for the celery extract (CE) was determined to be 0.1% and it was formulated into a cream. A total of 30 female Sprague Dawley rats were divided into five groups: Group 1, negative control; Group 2, positive control; Group 3, treated with 0.05% CE cream; Group 4, 0.1% CE cream; and Group 5, 0.2% CE cream. All animals in the groups were exposed to a full-thickness skin biopsy on the dorsal portion, and they were infected with 30 µL of 105 colony-forming units of the MRSA isolate. The treatment was administered twice a day for 7 days. The skin samples were collected on days 3 and 7 after the treatment. The skin tissue was examined histologically using hematoxylin and eosin, Gram staining, and immunohistochemistry against cytokeratin (CK)-17. RESULTS: Results showed that 0.2% of CE cream was the best treatment for wounds infected with MRSA. CE (0.2%) cream increased skin reepithelialization, fibroblast proliferation, and CK-17 expression; it also decreased the percentage of wound area, inflammatory cell infiltration, and bacterial colonization in skin wound tissue compared to the other treatments (p≤0.05). CONCLUSION: This study demonstrated that celery could be utilized as an alternative herbal therapy against MRSA-associated skin infections.

SELECTION OF CITATIONS
SEARCH DETAIL
...