Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
Add more filters










Publication year range
1.
Phytochemistry ; 164: 243-251, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31128818

ABSTRACT

Lipid-like compounds containing a dimethylarsinoyl group, i.e. Me2As(O)-, have been identified by liquid chromatography/inductively coupled plasma mass spectrometry (LC/ICP-MS) and non-aqueous reversed-phase high-performance liquid chromatography (positive and/or negative high-resolution tandem electrospray ionization mass spectrometry (NARP-HPLC/HR-ESI+(-)-MS/MS) from three strains of green algae of the genus Coccomyxa (Trebouxiophyceae, Chlorophyta). The algae were cultivated in a medium containing 10 g arsenic/L, i.e. 133.5 mmol/L of Na2HAsO4.7H2O. After extraction by methyl-tert-butyl ether (MTBE), total lipids were analyzed by ICP-MS or ESI-MS without any further separation or fractionation. A total of 39 molecular species of arsenic triacylglycerols (AsTAG), 15 arsenic phosphatidylcholines (AsPC), 8 arsenic phosphatidylethanolamines (AsPE), 6 arsenic phosphatidylinositols (AsPI), 2 arsenic phosphatidylglycerols (AsPG) and 5 unknown lipids (probably ceramides) were identified. The structures of all molecular species were confirmed by tandem MS. Dry matter of the individual strains contained different amounts of total arsenolipids, i.e. C. elongata CCALA 427 (0.32 mg/g), C. onubensis (1.48 mg/g), C. elongata S3 (2.13 mg/g). On the other hand, there were only slight differences between strains in the relative abundances of individual molecular species. Possible biosynthesis of long-chain lipids with the end group Me2As(O) has also been suggested.


Subject(s)
Arsenicals/isolation & purification , Chlorella/chemistry , Lipids/isolation & purification , Arsenicals/chemistry , Arsenicals/metabolism , Chlorella/metabolism , Lipids/chemistry , Molecular Structure
2.
Lipids ; 54(2-3): 177-187, 2019 02.
Article in English | MEDLINE | ID: mdl-30843230

ABSTRACT

Four bacterial isolates, which produced polyunsaturated fatty acids (PUFA), were isolated from water samples of radioactive springs collected from Jáchymov spa. Jáchymov (Sankt Joachimsthal) is a city in northwestern Bohemia, where Marie and Pierre Curie isolated radium in 1898 from the mineral uraninite. To date, four springs (Agricola, Behounek, C1, and Curie) have been used for spa purposes, that is for the treatment of nervous and rheumatic disorders by constantly produced radioactive gas radon (222 Rn) dissolved in the water. The radioactivity reaches 24 kBq/L. Using 16S rRNA gene sequence analysis, all four isolates were identified as members of the genus Kocuria, with two isolates designated 208 and 401 affiliated with Kocuria kristinae, while isolates 101 and 301 most likely with K. rhizophila. The content of fatty acids in polar lipids was determined by gas chromatography-mass spectrometry (GC-MS) and two PUFA, that is arachidonic and eicosapentaenoic, were identified. The position of double bonds was confirmed by GC-MS of 3-pyridylcarbinol (formerly picolinyl) esters. We assume that all four isolates of Kocuria produce PUFA to increase the stability of cell membranes, which may be impaired by the reaction of the reactive oxygen species. These can arise, for example, because of α radiation during 222 Rn decay.


Subject(s)
Fatty Acids, Unsaturated/metabolism , Micrococcaceae/genetics , Micrococcaceae/isolation & purification , Base Composition , Micrococcaceae/metabolism , Natural Springs/microbiology , RNA, Ribosomal, 16S/genetics , Water Microbiology
3.
Folia Microbiol (Praha) ; 64(6): 727-734, 2019 Nov.
Article in English | MEDLINE | ID: mdl-30788802

ABSTRACT

Due to the increasing number of Candida albicans' infections and the resistance of this pathogenic fungus to drugs, new therapeutic strategies are sought. One of such strategies may be the use of static magnetic field (SMF). C. albicans cultures were subjected to static magnetic field of the induction 0.5 T in the presence of fluconazole and amphotericin B. We identified a reduction of C. albicans hyphal length. Also, a statistically significant additional effect on the viability of C. albicans was revealed when SMF was combined with the antimycotic drug amphotericin B. The synergistic effect of this antimycotic and SMF may be due to the fact that amphotericin B binds to ergosterol in plasma membrane and SMF similarly to MF could influence domain orientation in plasma membrane (PM).


Subject(s)
Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Candida albicans/drug effects , Magnetic Fields , Candida albicans/growth & development , Fluconazole/pharmacology , Hyphae/drug effects , Hyphae/growth & development , Microbial Sensitivity Tests , Microbial Viability/drug effects
4.
Lipids ; 53(6): 627-639, 2018 06.
Article in English | MEDLINE | ID: mdl-30206958

ABSTRACT

Mass spectrometry-based shotgun lipidomics was applied to the analysis of sphingolipids of 11 yeast strains belonging to four genera, that is Cryptococcus, Saccharomyces, Schizosaccharomyces, and Wickerhamomyces. The analysis yielded comprehensive results on both qualitative and quantitative representation of complex sphingolipids of three classes-phosphoinositol ceramide (PtdInsCer), mannosyl inositol phosphoceramide (MInsPCer), and mannosyl diinositol phosphoceramide (M(InsP)2 Cer). In total, nearly 150 molecular species of complex sphingolipids were identified. Individual strains were cultured at five different temperatures, that is 5, 10, 20, 30, and 40 °C (Wickerhamomyces genus only up to 30 °C), and the change in the culture temperature was found to affect the representation of both the sphingolipid classes and the length of the long-chain bases (LCB). Individual classes of sphingolipids differing in polar heads differed in the temperature response. The relative content of PtdInsCer increased with increasing temperature, whereas that of M(InsP)2 Cer decreased. Molecular species having C18-LCB were associated with low cultivation temperature, and a higher proportion of C20-LCB molecular species was produced at higher temperatures regardless of the type of polar head. On the other hand, the influence of temperature on the representation of very long-chain fatty acids (VLCFA) was less noticeable, the effect of the taxonomic affiliation of the strains being more pronounced than the cultivation temperature. For example, lignoceric and 2-hydrocylo-lignoceric acids were characteristic of the genera Cryptococcus and Schizosaccharomyces, and of Saccharomyces genus cultivated at high temperatures.


Subject(s)
Saccharomyces cerevisiae/chemistry , Sphingolipids/analysis , Temperature , Protein Stability
5.
Folia Microbiol (Praha) ; 63(5): 569-579, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29926340

ABSTRACT

Cyanobacteria are one of the most successful and oldest forms of life that are present on Earth. They are prokaryotic photoautotrophic microorganisms that colonize so diverse environments as soil, seawater, and freshwater, but also stones, plants, or extreme habitats such as snow and ice as well as hot springs. This diversity in the type of environment they live in requires a successful adaptation to completely different conditions. For this reason, cyanobacteria form a wide range of different secondary metabolites. In particular, the cyanobacteria living in both freshwater and sea produce many metabolites that have biological activity. In this review, we focus on metabolites called siderophores, which are low molecular weight chemical compounds specifically binding iron ions. They have a relatively low molecular weight and are produced by bacteria and also by fungi. The main role of siderophores is to obtain iron from the environment and to create a soluble complex available to microbial cells. Siderophores play an important role in microbial ecology; for example, in agriculture they support the growth of many plants and increase their production by increasing the availability of Fe in plants. The aim of this review is to demonstrate the modern use of physico-chemical methods for the detection of siderophores in cyanobacteria and the use of these methods for the detection and characterization of the siderophore-producing microorganisms. Using high-performance liquid chromatography-mass spectrometry (LC-MS), it is possible not only to discover new chemical structures but also to identify potential interactions between microorganisms. Based on tandem mass spectrometry (MS/MS) analyses, previous siderophore knowledge can be used to interpret MS/MS data to examine both known and new siderophores.


Subject(s)
Cyanobacteria/metabolism , Siderophores/chemistry , Siderophores/isolation & purification , Chromatography, High Pressure Liquid , Iron/metabolism , Molecular Structure , Photochemical Processes , Seawater/microbiology , Siderophores/metabolism , Tandem Mass Spectrometry
6.
J Chromatogr A ; 1557: 9-19, 2018 Jul 06.
Article in English | MEDLINE | ID: mdl-29729864

ABSTRACT

Enantiomers of triacylglycerols (TAGs) containing any combination of very long chain fatty acids (VLCFAs) and/or very long chain polyunsaturated fatty acids (VLCPUFAs) with diolein, dilinolein and didocosahexaenoin were synthesized. Gradient non-aqueous reversed-phase high-performance liquid chromatography/high resolution atmospheric pressure chemical ionization-tandem mass spectrometry (NARP-HPLC/HRMS2-APCI) and chiral liquid chromatography were used for the separation and identification of molecular species of these TAGs. Further, NARP-LC and chiral LC were used to separate natural mixtures of TAGs obtained from four natural sources, i.e. ximenia oil (Ximenia americana), green alga (Botryococcus braunii), brewers yeast (Saccharomyces pastorianus) and a dinoflagellate (Amphidinium carterae). The ratio of regioisomers and enantiomers in individual samples was determined and a hypothesis has been confirmed on the biosynthetic pathway of natural TAGs, which is based on the preferential representation of VLCFAs and VLCPUFAs in the sn-1 position of the glycerol backbone.


Subject(s)
Fatty Acids, Nonesterified/chemistry , Fatty Acids, Unsaturated/chemistry , Triglycerides/isolation & purification , Atmospheric Pressure , Chlorophyta/chemistry , Chlorophyta/metabolism , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Dinoflagellida/chemistry , Dinoflagellida/metabolism , Saccharomyces/chemistry , Saccharomyces/metabolism , Stereoisomerism , Tandem Mass Spectrometry , Triglycerides/analysis , Triglycerides/chemistry
7.
Lipids ; 53(4): 413-427, 2018 04.
Article in English | MEDLINE | ID: mdl-29709080

ABSTRACT

Freshwater bryozoan Pectinatella magnifica was collected from a sand pit (South Bohemia). The total lipids after extraction from lyophilized bryozoans were analyzed using high-performance liquid chromatography/high-resolution negative tandem electrospray mass spectrometry. A total of 19 lipid classes were identified, including N-acyl-substituted phospholipids, that is, N-acylphosphatidylethanolamine and N-acylphosphatidylserine in their plasmenyl forms. Based on gas chromatography/mass spectrometry of 3-pyridylcarbonyl (picolinyl) esters, a very unusual fatty acid was identified, namely 24:7n-3 (all-cis-3,6,9,12,15,18,21-tetracosaheptaenoic acid). The presence of polyunsaturated fatty acids in individual classes is very specific: arachidonic and eicosapentaenoic acids being predominantly bound as amides in N-acyl phospholipids, that is, diacyl-N-acylphosphatidylethanolamines (NAPtdEtn), plasmenyl-N-acylphosphatidyl ethanolamines (PlsNAPtdEtn), diacyl-N-acylphosphatidylserines (NAPtdSer), and plasmenyl-N-acylphosphatidylserines (PlsNAPtdSer). While 24:6n-3 was identified in the sn-2 position of several phospholipids, 24:7n-3 was identified in only two plasmalogens, that is, PlsNAPtdEtn and PlsNAPtdSer. Thanks to the tandem mass spectrometry, we managed to identify the position of all acyl groups in both diacyl- and also in alkenyl-acyl-(plasmenyl) molecular species of N-acylphospholipids. The identification of the molecular species of N-acyl-substituted phosphatidylethanolamine and phosphatidylserine, including their plasmalogen forms, in the freshwater bryozoan P. magnifica has enabled the identification of endogenous cannabinoid precursors.


Subject(s)
Bryozoa/chemistry , Endocannabinoids/analysis , Endocannabinoids/chemistry , Animals , Chromatography, High Pressure Liquid , Fresh Water , Tandem Mass Spectrometry
8.
Lipids ; 53(1): 5-25, 2018 01.
Article in English | MEDLINE | ID: mdl-29446847

ABSTRACT

Lipids are among the most important organic compounds found in all living cells, from primitive archaebacteria to flowering plants or mammalian cells. They form part of cell walls and constitute cell storage material. Their biosynthesis and metabolism play key roles in faraway topics such as biofuel production (third-generation biofuels produced by microorganisms, e.g. algae) and human diseases such as adrenoleukodystrophy, Zellweger syndrome, or Refsum disease. Current lipidomic analysis requires fast and accurate processing of samples and especially their characterization. Because the number of possible lipids and, more specifically, molecular species of lipids is of the order of hundreds to thousands, it is necessary to process huge amounts of data in a short time. There are two basic approaches to lipidomic analysis: shotgun and liquid chromatography-mass spectometry. Both methods have their pros and cons. This review deals with lipidomics not according to the type of ionization or the lipid classes analyzed but according to the types of samples (organisms) under study. Thus, it is divided into lipidomic analysis of archaebacteria, bacteria, yeast, fungi, algae, plants, and animals.


Subject(s)
Archaea/genetics , Lipid Metabolism/genetics , Lipids/genetics , Metabolomics/methods , Animals , Archaea/chemistry , Chromatography, High Pressure Liquid , Chromatography, Liquid , Humans , Lipids/chemistry , Mammals/genetics
9.
Phytochemistry ; 148: 29-38, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29366853

ABSTRACT

Very long chain fatty acids (VLCFAs) were identified in four strains of the green alga Botryococcus braunii (Trebouxiophyceae). The algae contained a series of monoenoic fatty acids up to triacontenoic acid and further VLCFAs in amounts around 1% of total fatty acids. The separation of lipid classes using hydrophilic interaction chromatography revealed that the most abundant VLCFAs (28:2, 28:1 and 28:0) were contained in neutral lipids (triacylglycerols and/or diacylglycerols) and in phospholipids (phosphatidic acid and/or phosphatidylcholine). Using non-aqueous reversed-phase liquid chromatography tandem mass spectrometry (NARP-LC/MS2) of the appropriate collected fractions, molecular species of triacylglycerols containing one or two VLCFAs were described and phosphatidylcholines containing VLCFAs were separated for the first time. Because the presence of Botryosphaerella sudetica (Chlorophyceae) as contaminant of Botryococcus braunii strain Droop 1950/807-1 placed some doubts on the results of previous studies, a strain of this green alga of was also analyzed. In contrast to Botryococcus, C16, a substantially lower proportion of C18 polyunsaturated fatty acids and no VLCFAs were detected in Botryosphaerella.


Subject(s)
Chlorophyta/chemistry , Fatty Acids/analysis , Phospholipids/analysis , Chromatography, Liquid , Fatty Acids, Unsaturated/chemistry
10.
Folia Microbiol (Praha) ; 63(3): 261-272, 2018 May.
Article in English | MEDLINE | ID: mdl-28971316

ABSTRACT

Microbial adhesion to surfaces and the subsequent biofilm formation may result in contamination in food industry and in healthcare-associated infections and may significantly affect postoperative care. Some plants produce substances with antioxidant and antimicrobial properties that are able to inhibit the growth of food-borne pathogens. The aim of our study was to evaluate antimicrobial and anti-biofilm effect of baicalein, resveratrol, and pterostilbene on Candida albicans, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Escherichia coli. We determined the minimum inhibitory concentrations (MIC), the minimum adhesion inhibitory concentration (MAIC), and the minimum biofilm eradication concentration (MBEC) by crystal violet and XTT determination. Resveratrol and pterostilbene have been shown to inhibit the formation of biofilms as well as to disrupt preformed biofilms. Our results suggest that resveratrol and pterostilbene appear potentially very useful to control and inhibit biofilm contaminations by Candida albicans, Staphylococcus epidermidis, and Escherichia coli in the food industry.


Subject(s)
Anti-Infective Agents/pharmacology , Biofilms/drug effects , Flavanones/pharmacology , Plant Extracts/pharmacology , Stilbenes/pharmacology , Biofilms/growth & development , Candida albicans/drug effects , Candida albicans/growth & development , Escherichia coli/drug effects , Escherichia coli/growth & development , Microbial Sensitivity Tests , Plant Extracts/chemistry , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Resveratrol , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/growth & development
11.
World J Microbiol Biotechnol ; 33(11): 205, 2017 Nov 03.
Article in English | MEDLINE | ID: mdl-29101483

ABSTRACT

Mid-exponential cultures of two traditional biotechnological yeast species, winery Saccharomyces cerevisiae and the less ethanol tolerant bottom-fermenting brewery Saccharomyces pastorianus, were exposed to different concentrations of added ethanol (3, 5 and 8%) The degree of ethanol-induced cell stress was assessed by measuring the cellular activity of superoxide dismutase (SOD), level of lipid peroxidation products, changes in cell lipid content and fatty acid profile. The resveratrol as an antioxidant was found to decrease the ethanol-induced rise of SOD activity and suppress the ethanol-induced decrease in cell lipids. A lower resveratrol concentration (0.5 mg/l) even reduced the extent of lipid peroxidation in cells. Resveratrol also alleviated ethanol-induced changes in cell lipid composition in both species by strongly enhancing the proportion of saturated fatty acids and contributing thereby to membrane stabilization. Lower resveratrol concentrations could thus diminish the negative effects of ethanol stress on yeast cells and improve their physiological state. These effects may be utilized to enhance yeast vitality in high-ethanol-producing fermentations or to increase the number of yeast generations in brewery.


Subject(s)
Ethanol/pharmacology , Fatty Acids/metabolism , Lipid Peroxidation/drug effects , Saccharomyces cerevisiae/drug effects , Stilbenes/pharmacology , Stress, Physiological/drug effects , Superoxide Dismutase/metabolism , Antioxidants/metabolism , Lipid Metabolism/drug effects , Lipids/physiology , Resveratrol , Wine/microbiology
12.
Lipids ; 52(12): 1007-1017, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28905226

ABSTRACT

Yeast lipids and fatty acids (FA) were analyzed in Saccharomyces pastorianus from seven breweries and in the dietary yeast supplement Pangamin. GC-MS identified more than 30 FA, half of which were very-long chain fatty acids (VLCFA) with hydrocarbon chain lengths of ≥22 C atoms. Positional isomers ω-9 and ω-7 were identified in FA with C18-C28 even-numbered alkyl chains. The most abundant ω-7 isomer was cis-vaccenic acid. The structure of monounsaturated FA was proved by dimethyl disulfide adducts (position of double bonds and cis geometric configuration) and by GC-MS of pyridyl carbinol esters. Ultra-high performance liquid chromatography-tandem mass spectrometry with negative electrospray ionization identified the phospholipids phosphatidylethanolamine, phosphatidylinositol and phosphatidylcholine, with more than 150 molecular species. Wild-type unmutated brewer's yeast strains conventionally used for the manufacture of food supplements were found to contain VLCFA.


Subject(s)
Phospholipids/analysis , Saccharomyces/metabolism , Fatty Acids/chemistry , Fatty Acids, Monounsaturated , Gas Chromatography-Mass Spectrometry , Molecular Structure , Phospholipids/chemistry , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
13.
APMIS ; 125(11): 1033-1038, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28960474

ABSTRACT

Anaerobic bacteria, such as Bacteroides fragilis or Clostridium perfringens, are part of indigenous human flora. However, Clostridium difficile represents also an important causative agent of nosocomial infectious antibiotic-associated diarrhoea. Treatment of C. difficile infection is problematic, making it imperative to search for new compounds with antimicrobial properties. Hops (Humulus lupulus L.) contain substances with antibacterial properties. We tested antimicrobial activity of purified hop constituents humulone, lupulone and xanthohumol against anaerobic bacteria. The antimicrobial activity was established against B. fragilis, C. perfringens and C. difficile strains according to standard testing protocols (CLSI, EUCAST), and the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBC) were calculated. All C. difficile strains were toxigenic and clinically relevant, as they were isolated from patients with diarrhoea. Strongest antimicrobial effects were observed with xanthohumol showing MIC and MBC values of 15-107 µg/mL, which are close to those of conventional antibiotics in the strains of bacteria with increased resistance. Slightly higher MIC and MBC values were obtained with lupulone followed by higher values of humulone. Our study, thus, shows a potential of purified hop compounds, especially xanthohumol, as alternatives for treatment of infections caused by select anaerobic bacteria, namely nosocomial diarrhoea caused by resistant strains.


Subject(s)
Anti-Bacterial Agents/pharmacology , Clostridioides difficile/drug effects , Cyclohexenes/pharmacology , Flavonoids/pharmacology , Humulus/chemistry , Propiophenones/pharmacology , Terpenes/pharmacology , Anaerobiosis/physiology , Anti-Bacterial Agents/isolation & purification , Bacteroides fragilis/drug effects , Bacteroides fragilis/growth & development , Clostridioides difficile/growth & development , Clostridioides difficile/pathogenicity , Clostridium perfringens/drug effects , Clostridium perfringens/growth & development , Cross Infection/microbiology , Cyclohexenes/isolation & purification , Diarrhea/microbiology , Enterocolitis, Pseudomembranous/microbiology , Flavonoids/isolation & purification , Humans , Microbial Sensitivity Tests , Plant Extracts/chemistry , Propiophenones/isolation & purification , Symbiosis/physiology , Terpenes/isolation & purification
14.
Biochim Biophys Acta Biomembr ; 1859(10): 1974-1985, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28669766

ABSTRACT

Tok1p is a highly specific yeast plasma membrane potassium channel with strong outward directionality. Its opening is induced by membrane depolarization. Although the biophysical properties of Tok1p are well-described, its potentially important physiological role is currently largely unexplored. To address this issue, we examined the Tok1p activity following chemically-induced depolarization by measuring changes of plasma membrane potential (ΔΨ) using the diS-C3(3) fluorescence assay in a Tok1p-expressing and a Tok1p-deficient strain. We report that Tok1p channel activity in response to chemical stress does not depend solely on the extent of depolarization, as might have been expected, but may also be negatively influenced by accompanying effects of the used compound. The stressors may interact with the plasma membrane or the channel itself, or cause cytosolic acidification. All of these effects may negatively influence the Tok1p channel opening. While ODDC-induced depolarization exhibits the cleanest Tok1p activation, restoring an astonishing 75% of lost ΔΨ, higher BAC concentrations reduce Tok1p activity, probably because of direct interactions with the channel and/or its lipid microenvironment. This is not only the first study of the physiological role of Tok1p in ΔΨ maintenance under chemical stress, but also the first estimate of the extent of depolarization the channel is able to counterbalance.


Subject(s)
Fungal Proteins/metabolism , Membrane Potentials/physiology , Potassium Channels/metabolism , Stress, Physiological/physiology , Yeasts/metabolism , Cell Membrane
15.
Phytochemistry ; 139: 88-97, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28433954

ABSTRACT

This study describes the identification of very long chain polyunsaturated fatty acids (VLCPUFAs) in three strains of dinoflagellates (Amphidinium carterae, Cystodinium sp., and Peridinium aciculiferum). The strains were cultivated and their lipidomic profiles were obtained by high resolution mass spectrometry with the aid of positive and negative electrospray ionization (ESI) mode by Orbitrap apparatus. Hydrophilic interaction liquid chromatography (HILIC/ESI) was used to separate major lipid classes of the three genera of dinoflagellates by neutral loss scan showing the ion [M + H-28:8]+, where 28:8 was octacosaoctaenoic acid, and by precursor ion scanning of ions at m/z 407, which was an ion corresponding to the structure of acyl of 28:8 acid (C27H39COO-). Based on these analyzes, it was found that out of more than a dozen lipid classes present in the total lipids, only two classes of neutral lipids, i.e. major triacylglycerols and minor diacylglycerols contain VLCPUFAs. In polar lipids, VLCPUFAs were identified only in phosphatidic acid (PA) and phosphatidyl choline (PC) or in their lyso-forms (LPA and LPC). Further analysis of individual lipid classes by reversed-phase high-performance liquid chromatography (RP-HPLC) showed the presence of triacylglycerols (TAGs) containing VLCPUFAs, i.e. molecular species of the sn-28:7/28:8/28:8, sn-26:7/28:7/28:8, or sn-26:7/28:8/28:8 types. These TAGs are the longest and most unsaturated TAGs isolated from a natural source that have yet been synthesized. In the case of PA and PC, tandem MS identified sn-28:8/16:0-PA and sn-28:8/16:0-PC and the corresponding lyso-forms (28:8-LPC and 28:8-LPA). All these results indicate that TAGs containing VLCPUFAs are biosynthesized in dinoflagellates in the same manner as in higher eukaryotic organisms, which means that the PA, after conversion to DAG, serves as a precursor in the biosynthesis of other phospholipids, e.g. PC, and, after further acylation, also of TAG.


Subject(s)
Dinoflagellida/chemistry , Fatty Acids, Unsaturated/isolation & purification , Chromatography, Liquid/methods , Chromatography, Reverse-Phase , Fatty Acids, Unsaturated/chemistry , Hydrophobic and Hydrophilic Interactions , Morphinans , Phosphatidylcholines/analysis , Phospholipids , Quinolines
16.
Anal Biochem ; 524: 3-12, 2017 05 01.
Article in English | MEDLINE | ID: mdl-27318242

ABSTRACT

A survey of useful methods for separation and identification of regioisomers and enantiomers of triacylglycerols. Gas chromatography, gas chromatography-mass spectrometry, 13C NMR determination of regioisomers by enzymatic methods, and supercritical fluid chromatography are briefly surveyed, whereas a detailed description is given of the analysis of triacylglycerols by liquid chromatography, especially with silver ion (Ag+; argentation), and nonaqueous reversed phase liquid chromatography. Special attention is paid to chiral chromatography. Details of mass spectrometry of triacylglycerols are also described, especially the identification of important triacylglycerol ions such as [M + H-RCOOH]+ in atmospheric pressure chemical ionization mass spectra.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Triglycerides/analysis , Silver/chemistry
17.
J Chromatogr A ; 1467: 261-269, 2016 Oct 07.
Article in English | MEDLINE | ID: mdl-27425758

ABSTRACT

Regioisomers and enantiomers of triacylglycerols (TAGs) containing any combination of stearidonic (18:4n-3) and octadecapentaenoic (18:5n-3) acids were prepared by organic synthesis. Gradient polar organic liquid chromatography/high resolution atmospheric pressure chemical ionization-tandem mass spectrometry (NARP-LC/HRMS2-APCI) and chiral liquid chromatography were used for the separation and identification of molecular species of these TAGs. Further, NARP-LC and chiral LC were used to separate natural mixtures of TAGs obtained from the haptophyte alga Coccolithophora sp. cultivated in a salinity range from 7.5 to 60‰. The ratio of regioisomers and enantiomers was found to change with increasing salinity of the culture medium. This can be explained by variable activity of acyltransferases in cells exposed to salt stress.


Subject(s)
Fatty Acids, Unsaturated/isolation & purification , Triglycerides/isolation & purification , Atmospheric Pressure , Chromatography, High Pressure Liquid , Fatty Acids, Omega-3/chemistry , Fatty Acids, Omega-3/isolation & purification , Fatty Acids, Unsaturated/chemistry , Stereoisomerism , Tandem Mass Spectrometry , Triglycerides/chemistry
18.
Biochim Biophys Acta ; 1861(11): 1634-1642, 2016 11.
Article in English | MEDLINE | ID: mdl-27422372

ABSTRACT

Analysis of polar lipids from eight psychrophilic yeasts (Cryptococcus victoriae, Cystofilobasidium capitatum, Holtermaniella wattica, Mrakiella aquatica, M. cryoconiti, Rhodotorula lignophila, Kondoa malvinella and Trichosporon aggtelekiense) grown at 4-28°C by hydrophilic interaction liquid chromatography/high resolution electrospray ionization tandem mass spectrometry determined 17 classes of lipids and identified dozens of molecular species of phospholipids including their regioisomers. Most of the yeasts were able to grow over the whole temperature range, reaching the highest biomass at 4 or 10°C. On temperature drop to 4°C, all eight strains showed a significant decrease of MUFA and a simultaneous increase of PUFA such as α-linolenic acid, the content of which in the biomass reached up to 20%. We also found alterations in the proportions of individual phospholipids (PI, PE and PC), the PC/PE-ratio decreasing with decreasing temperature. With increasing temperature the content of PoO-PC rose while that of LL-PC decreased, the drop in the content of LL-PC being nearly 100-fold while the content of PoO-PC increased more than twice. A change in temperature brought about changes in molecular species of PC (molecular species PO-PC versus OP-PC) as well as PE, i.e. PO-PE and OP-PE. The phase transition temperature of PO-PC differs from OP-PC by 7°C and the difference between PO-PE and OP-PE is some 10°C; we thus assume that the cell compensates for the adverse temperature effect by changing the fatty acids in the sn-1 and sn-2 positions.


Subject(s)
Lipid Metabolism , Metabolomics/methods , Temperature , Yeasts/growth & development , Yeasts/metabolism , Fatty Acids/biosynthesis , Fatty Acids/chemistry , Phospholipids/chemistry , Phospholipids/metabolism , Principal Component Analysis
19.
World J Microbiol Biotechnol ; 32(8): 126, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27339307

ABSTRACT

The growth of microorganisms is affected by cultivation conditions, concentration of carbon and nitrogen sources and the presence of trace elements. One of the new possibilities of influencing the production of cell mass or lipids is the use of lanthanides. Lanthanides are biologically non-essential elements with wide applications in technology and industry and their concentration as environmental contaminants is therefore increasing. Although non-essential, lanthanides have been proposed (and even used) to produce beneficial effects in plants but their mechanisms of action are unclear. Recently, it was suggested that they may replace essential elements or operate as potent blockers of Ca(2+) channels. We tested the effect of low concentrations of lanthanides on traditional biotechnologically useful yeast species (Kluyveromyces polysporus, Saccharomyces cerevisiae, Torulospora delbrueckii), and species capable of high accumulation of lipids (Rhodotorula glutinis, Trichosporon cutaneum, Candida sp., Yarrowia lipolytica). Low concentrations of lanthanum and monazite were conducive to an increase in cell mass and lipids and also higher production of palmitoleic acid, commonly used in cosmetics and medicine, and ω6-linoleic acid which is a precursor of thromboxanes, prostaglandins and leucotrienes.


Subject(s)
Fatty Acids/biosynthesis , Lanthanoid Series Elements/pharmacology , Yeasts/growth & development , Biomass , Culture Media/chemistry , Industrial Microbiology , Lipid Metabolism/drug effects , Yeasts/drug effects
20.
Phytochemistry ; 130: 64-76, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27298276

ABSTRACT

Non-aqueous reversed-phase high-performance liquid chromatography (NARP-HPLC) with atmospheric pressure chemical ionization (APCI) was used for separation of triacylglycerols from five strains of haptophyte algae (genera Coccolithophora, Isochrysis, and Prymnesium). This study describes the separation and identification of C18 polyunsaturated triacylglycerols containing stearidonic and octadecapentaenoic fatty acids, including their regioisomers. Salinity affects the proportion of saturated and unsaturated fatty acids. The biosynthesis of C18 polyunsaturated triacylglycerols was found to be very stereospecific and to depend on the salinity of cultivation media, asymmetric regioisomers predominating at low salinity (sn-OpOpSt and/or PoStSt) and symmetric ones at high salinity (sn-OpStOp and or StPoSt).


Subject(s)
Fatty Acids/analysis , Haptophyta/chemistry , Triglycerides/analysis , Chromatography, High Pressure Liquid , Fatty Acids, Omega-3/chemistry , Fatty Acids, Unsaturated/chemistry , Germany , Haptophyta/genetics , Molecular Structure , Salinity , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...