Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Estuaries Coast ; 39(2): 311-332, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27721675

ABSTRACT

Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear, because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a "theory of everything" for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy.

2.
Deep Sea Res 2 Top Stud Oceanogr ; 103: 79-95, 2014 May 01.
Article in English | MEDLINE | ID: mdl-25288829

ABSTRACT

Cysts of Alexandrium fundyense, a dinoflagellate that causes toxic algal blooms in the Gulf of Maine, spend the winter as dormant cells in the upper layer of bottom sediment or the bottom nepheloid layer and germinate in spring to initiate new blooms. Erosion measurements were made on sediment cores collected at seven stations in the Gulf of Maine in the autumn of 2011 to explore if resuspension (by waves and currents) could change the distribution of over-wintering cysts from patterns observed in the previous autumn; or if resuspension could contribute cysts to the water column during spring when cysts are viable. The mass of sediment eroded from the core surface at 0.4 Pa ranged from 0.05 kg m-2 near Grand Manan Island, to 0.35 kg m-2 in northern Wilkinson Basin. The depth of sediment eroded ranged from about 0.05 mm at a station with sandy sediment at 70 m water depth on the western Maine shelf, to about 1.2 mm in clayey-silt sediment at 250 m water depth in northern Wilkinson Basin. The sediment erodibility measurements were used in a sediment-transport model forced with modeled waves and currents for the period October 1, 2010 to May 31, 2011 to predict resuspension and bed erosion. The simulated spatial distribution and variation of bottom shear stress was controlled by the strength of the semi-diurnal tidal currents, which decrease from east to west along the Maine coast, and oscillatory wave-induced currents, which are strongest in shallow water. Simulations showed occasional sediment resuspension along the central and western Maine coast associated with storms, steady resuspension on the eastern Maine shelf and in the Bay of Fundy associated with tidal currents, no resuspension in northern Wilkinson Basin, and very small resuspension in western Jordan Basin. The sediment response in the model depended primarily on the profile of sediment erodibility, strength and time history of bottom stress, consolidation time scale, and the current in the water column. Based on analysis of wave data from offshore buoys from 1996 to 2012, the number of wave events inducing a bottom shear stress large enough to resuspend sediment at 80 m ranged from 0 to 2 in spring (April and May) and 0 to 10 in winter (October through March). Wave-induced resuspension is unlikely in water greater than about 100 m deep. The observations and model results suggest that a millimeter or so of sediment and associated cysts may be mobilized in both winter and spring, and that the frequency of resuspension will vary interannually. Depending on cyst concentration in the sediment and the vertical distribution in the water column, these events could result in a concentration in the water column of at least 104 cysts m-3. In some years, resuspension events could episodically introduce cysts into the water column in spring, where germination is likely to be facilitated at the time of bloom formation. An assessment of the quantitative effects of cyst resuspension on bloom dynamics in any particular year requires more detailed investigation.

3.
Deep Sea Res 2 Top Stud Oceanogr ; 103: 96-111, 2014 May.
Article in English | MEDLINE | ID: mdl-26045635

ABSTRACT

The life cycle of Alexandrium fundyense in the Gulf of Maine includes a dormant cyst stage that spends the winter predominantly in the bottom sediment. Wave-current bottom stress caused by storms and tides induces resuspension of cyst-containing sediment during winter and spring. Resuspended sediment could be transported by water flow to different locations in the Gulf and the redistribution of sediment containing A. fundyense cysts could alter the spatial and temporal manifestation of its spring bloom. The present study evaluates model near-bottom flow during storms, when sediment resuspension and redistribution are most likely to occur, between October and May when A. fundyense cells are predominantly in cyst form. Simulated water column sediment (mud) concentrations from representative locations of the Gulf are used to initialize particle tracking simulations for the period October 2010-May 2011. Particles are tracked in full three-dimensional model solutions including a sinking velocity characteristic of cyst and aggregated mud settling (0.1 mm s-1). Although most of the material was redeposited near the source areas, small percentages of total resuspended sediment from some locations in the western (~4%) and eastern (2%) Maine shelf and the Bay of Fundy (1%) traveled distances longer than 100 km before resettling. The redistribution changed seasonally and was sensitive to the prescribed sinking rate. Estimates of the amount of cysts redistributed with the sediment are small compared to the inventory of cysts in the upper few centimeters of sediment.

4.
Environ Sci Technol ; 41(7): 2282-8, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17438776

ABSTRACT

The release of particulate-phase trace metals due to sediment resuspension has been investigated by combining erosion chamber experiments that apply a range of shear stresses typically encountered in coastal environments with a shear stress record simulated by a hydrodynamic model. Two sites with contrasting sediment chemistry were investigated. Sediment particles enriched in silver, copper, and lead, 4-50 times greater than the bulk surface-sediment content, were the first particles to be eroded. As the shear-stress level was increased in the chamber, the total mass eroded increased, butthe enrichment of these trace metals fell, approaching the bulk-sediment content. From the temporal distribution of shear stress generated by the hydrodynamic model for a site in Boston Harbor, resuspension fluxes were estimated. The erosion threshold of this site is exceeded during spring tides, releasing the particles enriched in trace metals into the water column. Due to the higher trace metal content and the regularity of resuspension, low-energy resuspension events (up to a shear stress of 0.2 N/m(2)) contribute up to 60% of the resuspension metal flux in an average year. The estimated annual quantity of copper and lead resuspended into the water column is higher than estimates of the total riverine flux for these metals. These results indicate that sediment resuspension is a very important mechanism for releasing metals into the water column and provide new insight into the chemical and physical processes controlling the long-term fate of trace metals in contaminated sediments.


Subject(s)
Geologic Sediments/analysis , Metals, Heavy/analysis , Models, Theoretical , Water Movements , Water Pollutants/analysis , Massachusetts , Particle Size , Suspensions
SELECTION OF CITATIONS
SEARCH DETAIL
...