Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 71(1): 56-72.e4, 2018 07 05.
Article in English | MEDLINE | ID: mdl-30008319

ABSTRACT

Chromatin remodeling complexes play essential roles in metazoan development through widespread control of gene expression, but the precise molecular mechanisms by which they do this in vivo remain ill defined. Using an inducible system with fine temporal resolution, we show that the nucleosome remodeling and deacetylation (NuRD) complex controls chromatin architecture and the protein binding repertoire at regulatory regions during cell state transitions. This is primarily exerted through its nucleosome remodeling activity while deacetylation at H3K27 follows changes in gene expression. Additionally, NuRD activity influences association of RNA polymerase II at transcription start sites and subsequent nascent transcript production, thereby guiding the establishment of lineage-appropriate transcriptional programs. These findings provide a detailed molecular picture of genome-wide modulation of lineage-specific transcription by an essential chromatin remodeling complex as well as insight into the orchestration of molecular events involved in transcriptional transitions in vivo. VIDEO ABSTRACT.


Subject(s)
Gene Expression Regulation , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Mouse Embryonic Stem Cells/metabolism , Nucleosomes/metabolism , RNA Polymerase II/metabolism , Transcription, Genetic , Acetylation , Animals , Cell Line , Histones/genetics , Histones/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Mice , Mouse Embryonic Stem Cells/cytology , Nucleosomes/genetics , RNA Polymerase II/genetics , Transcription Initiation Site
2.
Development ; 142(15): 2586-97, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26116663

ABSTRACT

Chromatin remodelling proteins are essential for different aspects of metazoan biology, yet functional details of why these proteins are important are lacking. Although it is possible to describe the biochemistry of how they remodel chromatin, their chromatin-binding profiles in cell lines, and gene expression changes upon loss of a given protein, in very few cases can this easily translate into an understanding of how the function of that protein actually influences a developmental process. Here, we investigate how the chromatin remodelling protein CHD4 facilitates the first lineage decision in mammalian embryogenesis. Embryos lacking CHD4 can form a morphologically normal early blastocyst, but are unable to successfully complete the first lineage decision and form functional trophectoderm (TE). In the absence of a functional TE, Chd4 mutant blastocysts do not implant and are hence not viable. By measuring transcript levels in single cells from early embryos, we show that CHD4 influences the frequency at which unspecified cells in preimplantation stage embryos express lineage markers prior to the execution of this first lineage decision. In the absence of CHD4, this frequency is increased in 16-cell embryos, and by the blastocyst stage cells fail to properly adopt a TE gene expression programme. We propose that CHD4 allows cells to undertake lineage commitment in vivo by modulating the frequency with which lineage-specification genes are expressed. This provides novel insight into both how lineage decisions are made in mammalian cells, and how a chromatin remodelling protein functions to facilitate lineage commitment.


Subject(s)
Blastocyst/physiology , Cell Differentiation/physiology , Cell Lineage/physiology , DNA Helicases/metabolism , Gene Expression Regulation, Developmental/physiology , Animals , Chromatin Assembly and Disassembly/genetics , Crosses, Genetic , DNA Primers/genetics , Fluorescent Antibody Technique , In Situ Nick-End Labeling , Mice , Mice, Inbred C57BL , Multiplex Polymerase Chain Reaction , Single-Cell Analysis
3.
FEBS J ; 282(9): 1692-702, 2015 May.
Article in English | MEDLINE | ID: mdl-25354247

ABSTRACT

Proteins that modify the structure of chromatin are known to be important for various aspects of metazoan biology including development, disease and possibly ageing. Yet functional details of why these proteins are important, i.e. how their action influences a given biological process, are lacking. While it is now possible to describe the biochemistry of how these proteins remodel chromatin, their chromatin binding profiles in cell lines, or gene expression changes upon loss of a given protein, in very few cases has this easily translated into an understanding of how the function of that protein actually influences a developmental process. Given that many chromatin modifying proteins will largely exert their influence through control of gene expression, it is useful to consider developmental processes as changes in the gene regulatory network (GRN), with each cell type exhibiting a unique gene expression profile. In this essay we consider the impact of two abundant and highly conserved chromatin modifying complexes, namely the nucleosome remodelling and deacetylation (NuRD) complex and the polycomb repressive complex 2 (PRC2), on the change in GRNs associated with lineage commitment during early mammalian development. We propose that while the NuRD complex limits the stability of cell states and defines the developmental trajectory between two stable states, PRC2 activity is important for stabilizing a new GRN once established. Although these two complexes display different biochemical activities, chromatin binding profiles and mutant phenotypes, we propose a model to explain how they cooperate to facilitate the transition through cell states that is development.


Subject(s)
Cell Lineage , Chromatin/metabolism , Animals , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Gene Regulatory Networks , Mice
4.
Cell Stem Cell ; 10(5): 583-94, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22560079

ABSTRACT

Transcriptional heterogeneity within embryonic stem cell (ESC) populations has been suggested as a mechanism by which a seemingly homogeneous cell population can initiate differentiation into an array of different cell types. Chromatin remodeling proteins have been shown to control transcriptional variability in yeast and to be important for mammalian ESC lineage commitment. Here we show that the Nucleosome Remodeling and Deacetylation (NuRD) complex, which is required for ESC lineage commitment, modulates both transcriptional heterogeneity and the dynamic range of a set of pluripotency genes in ESCs. In self-renewing conditions, the influence of NuRD at these genes is balanced by the opposing action of self-renewal factors. Upon loss of self-renewal factors, the action of NuRD is sufficient to silence transcription of these pluripotency genes, allowing cells to exit self-renewal. We propose that modulation of transcription levels by NuRD is key to maintaining the differentiation responsiveness of pluripotent cells.


Subject(s)
Embryonic Stem Cells/physiology , Gene Expression Regulation, Developmental , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Pluripotent Stem Cells/physiology , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Cells, Cultured , DNA-Binding Proteins/genetics , Genetic Heterogeneity , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Mice , Mice, Knockout , Transcription Factors/genetics
5.
Nat Commun ; 2: 426, 2011 Aug 09.
Article in English | MEDLINE | ID: mdl-21829188

ABSTRACT

The proposal that birds descended from theropod dinosaurs with digits 2, 3 and 4 was recently given support by short-term fate maps, suggesting that the chick wing polarizing region-a group that Sonic hedgehog-expressing cells-gives rise to digit 4. Here we show using long-term fate maps that Green fluorescent protein-expressing chick wing polarizing region grafts contribute only to soft tissues along the posterior margin of digit 4, supporting fossil data that birds descended from theropods that had digits 1, 2 and 3. In contrast, digit IV of the chick leg with four digits (I-IV) arises from the polarizing region. To determine how digit identity is specified over time, we inhibited Sonic hedgehog signalling. Fate maps show that polarizing region and adjacent cells are specified in parallel through a series of anterior to posterior digit fates-a process of digit specification that we suggest is involved in patterning all vertebrate limbs with more than three digits.


Subject(s)
Biological Evolution , Birds/growth & development , Body Patterning , Wings, Animal/growth & development , Animals , Birds/anatomy & histology , Birds/classification , Birds/genetics , Gene Expression , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Signal Transduction , Wings, Animal/anatomy & histology , Wings, Animal/metabolism
6.
Eur J Hum Genet ; 18(5): 527-32, 2010 May.
Article in English | MEDLINE | ID: mdl-19997128

ABSTRACT

Léri-Weill Dyschondrosteosis (LWD) is a dominant skeletal disorder characterized by short stature and distinct bone anomalies. SHOX gene mutations and deletions of regulatory elements downstream of SHOX resulting in haploinsufficiency have been found in patients with LWD. SHOX encodes a homeodomain transcription factor and is known to be expressed in the developing limb. We have now analyzed the regulatory significance of the region upstream of the SHOX gene. By comparative genomic analyses, we identified several conserved non-coding elements, which subsequently were tested in an in ovo enhancer assay in both chicken limb bud and cornea, where SHOX is also expressed. In this assay, we found three enhancers to be active in the developing chicken limb, but none were functional in the developing cornea. A screening of 60 LWD patients with an intact SHOX coding and downstream region did not yield any deletion of the upstream enhancer region. Thus, we speculate that SHOX upstream deletions occur at a lower frequency because of the structural organization of this genomic region and/or that SHOX upstream deletions may cause a phenotype that differs from the one observed in LWD.


Subject(s)
Chickens/genetics , Enhancer Elements, Genetic/genetics , Extremities/embryology , Homeodomain Proteins/genetics , Animals , Chick Embryo , Chromosomes, Human, X/genetics , Conserved Sequence/genetics , DNA, Intergenic/genetics , Genetic Testing , Genome, Human/genetics , Humans , Sequence Homology, Nucleic Acid , Short Stature Homeobox Protein , Telomere/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...