Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
ACS Nanosci Au ; 4(1): 30-61, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38406316

ABSTRACT

As the field of luminescence thermometry has matured, practical applications of luminescence thermometry techniques have grown in both frequency and scope. Due to the biocompatibility of most luminescent thermometers, many of these applications fall within the realm of biology. However, luminescence thermometry is increasingly employed beyond the biological realm, with expanding applications in areas such as thermal characterization of microelectronics, catalysis, and plasmonics. Here, we review the motivations, methodologies, and advances linked to nonbiological applications of luminescence thermometry. We begin with a brief overview of luminescence thermometry probes and techniques, focusing on those most commonly used for nonbiological applications. We then address measurement capabilities that are particularly relevant for these applications and provide a detailed survey of results across various application categories. Throughout the review, we highlight measurement challenges and requirements that are distinct from those of biological applications. Finally, we discuss emerging areas and future directions that present opportunities for continued research.

2.
Bioorg Med Chem Lett ; 43: 128077, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33932522

ABSTRACT

In our efforts to identify orally bioavailable CGRP receptor antagonists, we previously discovered a novel series of orally available azepinone derivatives that unfortunately also exhibited the unwanted property of potent time-dependent human CYP3A4 inhibition. Through heterocyclic replacement of the indazole ring, we discovered a series of heterocycle derivatives as high-affinity CGRP receptor antagonists. Some of them showed reasonable oral exposures, and the imidazolone derivatives that showed good oral exposure also exhibited substantially reduced time-dependent CYP3A4 inhibition. Several compounds showed strong in vivo efficacy in our marmoset facial blood flow assay with up to 87% inhibition of CGRP-induced activity. However, oral bioavailability generally remained low, emphasizing the challenges we and others encountered in discovering clinical development candidates for this difficult Class B GPCR target.


Subject(s)
Azepines/pharmacology , Calcitonin Gene-Related Peptide Receptor Antagonists/pharmacology , Receptors, Calcitonin Gene-Related Peptide/metabolism , Azepines/chemical synthesis , Azepines/chemistry , Calcitonin Gene-Related Peptide Receptor Antagonists/chemical synthesis , Calcitonin Gene-Related Peptide Receptor Antagonists/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 31: 127624, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33096162

ABSTRACT

Calcitonin gene-related peptide (CGRP) receptor antagonists have been shown clinically to be effective treatments for migraine. Zavegepant (BHV-3500, BMS-742413) is a high affinity antagonist of the CGRP receptor (hCGRP Ki = 0.023 nM) that has demonstrated efficacy in the acute treatment of migraine with intranasal delivery in a Phase 2/3 trial, despite showing low oral bioavailability in rats (FPO = 1.7%). Using zavegepant as a template, we sought to improve oral bioavailability through a series of azepinones which were designed in an attempt to reduce the number of rotatable bonds. These efforts led to the discovery of compound 21 which was able to mostly maintain high affinity binding (hCGRP Ki = 0.100 nM) and in vivo efficacy in the marmoset facial blood flow assay, while greatly improving oral bioavailability (rat FPO = 17%).


Subject(s)
Azepines/pharmacology , Calcitonin Gene-Related Peptide Receptor Antagonists/pharmacology , Indazoles/pharmacology , Receptors, Calcitonin Gene-Related Peptide/metabolism , Azepines/chemistry , Calcitonin Gene-Related Peptide Receptor Antagonists/chemistry , Dose-Response Relationship, Drug , Humans , Indazoles/chemistry , Molecular Structure , Structure-Activity Relationship
4.
PLoS One ; 12(12): e0187609, 2017.
Article in English | MEDLINE | ID: mdl-29261656

ABSTRACT

Agonists at the nicotinic acetylcholine alpha 7 receptor (nAChR α7) subtype have the potential to treat cognitive deficits in patients with Alzheimer's disease (AD) or schizophrenia. Visuo-spatial paired associates learning (vsPAL) is a task that has been shown to reliably predict conversion from mild cognitive impairment to AD in humans and can also be performed by nonhuman primates. Reversal of scopolamine-induced impairment of vsPAL performance may represent a translational approach for the development of nAChR α7 agonists. The present study investigated the effect of treatment with the acetylcholinesterase inhibitor, donepezil, or three nAChR α7 agonists, BMS-933043, EVP-6124 and RG3487, on vsPAL performance in scopolamine-treated cynomolgus monkeys. Scopolamine administration impaired vsPAL performance accuracy in a dose- and difficulty- dependent manner. The impairment of eventual accuracy, a measure of visuo-spatial learning during the task, was significantly ameliorated by treatment with donepezil (0.3 mg/kg, i.m.), EVP-6124 (0.01 mg/kg, i.m.) or BMS-933043 (0.03, 0.1 and 0.3 mg/kg, i.m.). Both nAChR α7 agonists showed inverted-U shaped dose-effect relationships with EVP-6124 effective at a single dose only whereas BMS-933043 was effective across at least a 10 fold dose/exposure range. RG3487 was not efficacious in this paradigm at the dose range examined (0.03-1 mg/kg, i.m.). These results are the first demonstration that the nAChR α7 agonists, EVP-6124 and BMS-933043, can ameliorate scopolamine-induced cognitive deficits in nonhuman primates performing the vsPAL task.


Subject(s)
Paired-Associate Learning/drug effects , Quinuclidines/pharmacology , Space Perception/classification , Spiro Compounds/pharmacology , Thiophenes/pharmacology , Visual Perception/drug effects , alpha7 Nicotinic Acetylcholine Receptor/agonists , Animals , Donepezil , Indans/pharmacology , Macaca fascicularis , Male , Piperidines/pharmacology , Quinuclidines/chemistry , Reaction Time/drug effects , Scopolamine , Spiro Compounds/chemistry , Task Performance and Analysis , Thiophenes/chemistry , Treatment Outcome
5.
Bioorg Med Chem Lett ; 23(11): 3157-61, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23632269

ABSTRACT

Calcitonin gene-related peptide (CGRP) receptor antagonists have been shown to be efficacious as abortive migraine therapeutics with the absence of cardiovascular liabilities that are associated with triptans. Herein, we report the discovery of a highly potent CGRP receptor antagonist, BMS-742413, with the potential to provide rapid onset of action through intranasal delivery. The compound displays excellent aqueous solubility, oxidative stability, and toxicological profile. BMS-742413 has good intranasal bioavailability in the rabbit and shows a robust, dose-dependent inhibition of CGRP-induced increases in marmoset facial blood flow.


Subject(s)
Amides/chemistry , Calcitonin Gene-Related Peptide Receptor Antagonists , Indazoles/chemistry , Quinolones/chemistry , Administration, Intranasal , Amides/pharmacology , Amides/therapeutic use , Animals , Caco-2 Cells , Callithrix , Coronary Vessels/drug effects , Drug Evaluation, Preclinical , Face/blood supply , Humans , Indazoles/pharmacology , Indazoles/therapeutic use , Migraine Disorders/drug therapy , Quinolones/pharmacology , Quinolones/therapeutic use , Rabbits , Rats , Receptors, Calcitonin Gene-Related Peptide/metabolism , Respiratory Mucosa/drug effects , Respiratory Mucosa/pathology
6.
Bioorg Med Chem Lett ; 23(6): 1870-3, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23402880

ABSTRACT

Various substituted indazole and benzoxazolone amino acids were investigated as d-tyrosine surrogates in highly potent CGRP receptor antagonists. Compound 3, derived from the 7-methylindazole core, afforded a 30-fold increase in CGRP binding potency compared with its unsubstituted indazole analog 1. When dosed at 0.03mg/kg SC, compound 2 (a racemic mixture of 3 and its (S)-enantiomer) demonstrated robust inhibition of CGRP-induced increases in mamoset facial blood flow up to 105min. The compound possesses a favorable predictive in vitro toxicology profile, and good aqueous solubility. When dosed as a nasal spray in rabbits, 3 was rapidly absorbed and showed good intranasal bioavailability (42%).


Subject(s)
Amino Acids/chemistry , Calcitonin Gene-Related Peptide Receptor Antagonists , Indazoles/chemical synthesis , Quinazolinones/chemical synthesis , Tyrosine/chemistry , Administration, Intranasal , Amino Acids/chemical synthesis , Amino Acids/pharmacokinetics , Animals , Benzoxazoles/chemistry , Biological Availability , Half-Life , Indazoles/chemistry , Indazoles/pharmacokinetics , Protein Binding , Quinazolinones/chemistry , Quinazolinones/pharmacokinetics , Rabbits , Receptors, Calcitonin Gene-Related Peptide/metabolism , Structure-Activity Relationship
7.
J Med Chem ; 55(23): 10644-51, 2012 Dec 13.
Article in English | MEDLINE | ID: mdl-23153230

ABSTRACT

Calcitonin gene-related peptide (CGRP) receptor antagonists have demonstrated clinical efficacy in the treatment of acute migraine. Herein, we describe the design, synthesis, and preclinical characterization of a highly potent, oral CGRP receptor antagonist BMS-927711 (8). Compound 8 has good oral bioavailability in rat and cynomolgus monkey, attractive overall preclinical properties, and shows dose-dependent activity in a primate model of CGRP-induced facial blood flow. Compound 8 is presently in phase II clinical trials.


Subject(s)
Calcitonin Gene-Related Peptide/antagonists & inhibitors , Drug Discovery , Migraine Disorders/drug therapy , Piperidines/chemistry , Piperidines/therapeutic use , Pyridines/chemistry , Pyridines/therapeutic use , Administration, Oral , Clinical Trials as Topic , Humans , Magnetic Resonance Spectroscopy , Piperidines/pharmacology , Pyridines/pharmacology
8.
Bioorg Med Chem Lett ; 22(14): 4723-7, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22727645

ABSTRACT

We have systematically studied the effects of varying the central unnatural amino acid moiety on CGRP receptor antagonist potency and CYP inhibition in a series of ureidoamides. In this Letter, we report the discovery of compound 23, a potent CGRP receptor antagonist with only weak CYP3A4 inhibition. Unlike the triptans, compound 23 did not cause active constriction of ex vivo human cerebral arteries. At doses of 0.3-1 mg/kg (s.c.), 23 showed robust inhibition of CGRP-induced increases in marmoset facial blood flow, a validated migraine model. Ureidoamide 23 derives from a novel amino acid, 1H-indazol-5-yl substituted alanine as a tyrosine surrogate.


Subject(s)
Calcitonin Gene-Related Peptide Receptor Antagonists , Animals , Callithrix , Coronary Vessels/drug effects , Cytochrome P-450 CYP3A Inhibitors , Humans , In Vitro Techniques , Molecular Structure , Structure-Activity Relationship , Tyrosine/chemistry
9.
ACS Med Chem Lett ; 3(4): 337-41, 2012 Apr 12.
Article in English | MEDLINE | ID: mdl-24900474

ABSTRACT

Calcitonin gene-related peptide (CGRP) receptor antagonists have been clinically shown to be effective in the treatment of migraine, but identification of potent and orally bioavailable compounds has been challenging. Herein, we describe the conceptualization, synthesis, and preclinical characterization of a potent, orally active CGRP receptor antagonist 5 (BMS-846372). Compound 5 has good oral bioavailability in rat, dog, and cynomolgus monkeys and overall attractive preclinical properties including strong (>50% inhibition) exposure-dependent in vivo efficacy in a marmoset migraine model.

10.
J Med Chem ; 51(16): 4858-61, 2008 Aug 28.
Article in English | MEDLINE | ID: mdl-18665579

ABSTRACT

Calcitonin gene-related peptide (CGRP) has been implicated in the pathogenesis of migraine. Early chemistry leads suffered from modest potency, significant CYP3A4 inhibition, and poor aqueous solubility. Herein, we describe the optimization of these leads to give 4 (BMS-694153), a molecule with outstanding potency, a favorable predictive toxicology profile, and remarkable aqueous solubility. Compound 4 has good intranasal bioavailability in rabbits and shows dose-dependent activity in validated in vivo and ex vivo migraine models.


Subject(s)
Calcitonin Gene-Related Peptide Receptor Antagonists , Indazoles/therapeutic use , Migraine Disorders/drug therapy , Quinazolinones/therapeutic use , Administration, Intranasal , Animals , Biological Availability , Calcitonin Gene-Related Peptide/antagonists & inhibitors , Callithrix , Coronary Vessels/drug effects , Face/blood supply , Humans , Indazoles/administration & dosage , Indazoles/chemical synthesis , Quinazolinones/administration & dosage , Quinazolinones/chemical synthesis , Rabbits , Regional Blood Flow/drug effects , Vasodilation/drug effects
11.
J Pharmacol Exp Ther ; 313(2): 840-7, 2005 May.
Article in English | MEDLINE | ID: mdl-15701710

ABSTRACT

We evaluated the effects of 4-(5-chloro-2-hydroxyphenyl)-3-(2-hydroxyethyl)-6-(trifluoromethyl)-quinolin-2(1H)-one (BMS-223131), an opener of large conductance Ca(2+)-activated potassium (maxi-K) channels, on normal and stress-exacerbated colonic motility and visceral nociception in the rat. Fecal output was employed as an index of motility. Visceral nociception, in response to intracolonic balloon distension (10-90 mm Hg; 30 s duration), was evaluated using one of three indices: change in blood pressure, abdominal withdrawal, or myoelectrical activity. BMS-223131 (2, 6, or 20 mg/kg i.p.) produced a small but dose-dependent and significant reduction in cumulative 24-h fecal output. Fecal output in response to stress (1-h restraint plus bursts of air to the face) was markedly inhibited by BMS-223131, and moisture content was significantly reduced. With regard to visceral pain, the transient and distention-dependent reduction in arterial pressure in anesthetized animals was inhibited by BMS-223131 in a dose-dependent manner. Distension-induced abdominal withdrawal in conscious rats was also dose-dependently attenuated by BMS-223131. BMS-223131 at a dose of 20 mg/kg markedly attenuated the increase in myoelectrical activity evoked by balloon distention in conscious animals. BMS-223131 was also evaluated in viscerally hypersensitive rats (sensitized as neonates by intracolonic mustard oil) where it produced a robust dose-dependent attenuation of the abdominal withdrawal response. Compared with naive animals, BMS-223131 was more potent in the sensitized animals. Thus, BMS-223131 effectively reduced stress-induced colonic motility and visceral nociception supporting the potential utility of maxi-K channel openers for the treatment of bowel disorders involving dysfunctional motility and visceral sensitivity.


Subject(s)
Colon/drug effects , Gastrointestinal Motility/drug effects , Pain Measurement/drug effects , Potassium Channels, Calcium-Activated/agonists , Potassium Channels, Calcium-Activated/physiology , Quinolones/administration & dosage , Stress, Physiological/drug therapy , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Colon/physiology , Dose-Response Relationship, Drug , Female , Gastrointestinal Motility/physiology , Ion Channel Gating/drug effects , Ion Channel Gating/physiology , Large-Conductance Calcium-Activated Potassium Channels , Pain Measurement/methods , Quinolines/administration & dosage , Quinolines/chemistry , Quinolones/chemistry , Rats , Rats, Wistar , Stress, Physiological/physiopathology , Viscera/drug effects , Viscera/physiology
12.
J Pharmacol Exp Ther ; 313(1): 250-9, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15608074

ABSTRACT

BL-1249 [(5,6,7,8-tetrahydro-naphthalen-1-yl)-[2-(1H-tetrazol-5-yl)-phenyl]-amine] produced a concentration-dependent membrane hyperpolarization of cultured human bladder myocytes, assessed as either a reduction in fluorescence of the voltage-sensitive dye bis-(1,2-dibutylbarbituric acid)trimethine oxonol (EC50 = 1.26 +/- 0.6 microM) or by direct electrophysiological measurement (EC50 = 1.49 +/- 0.08 microM). BL-1249 also produced a membrane hyperpolarization of acutely dissociated rat bladder myocytes. Voltage-clamp studies in human bladder cells revealed that BL-1249 activated an instantaneous, noninactivating current that reversed near E(K). The BL-1249-evoked outward K+ current was insensitive to blockade by glyburide, tetraethylammonium, iberiotoxin, 4-aminopyridine, apamin, or Mg2+. However, the current was inhibited by extracellular Ba2+ (10 mM). In in vitro organ bath experiments, BL-1249 produced a concentration-dependent relaxation of 30 mM KCl-induced contractions in rat bladder strips (EC50 = 1.12 +/- 0.37 microM), yet had no effect on aortic strips up to the highest concentration tested (10 microM). The bladder relaxation produced by BL-1249 was partially blocked by Ba2+ (1 and 10 mM) but not by apamin, iberiotoxin, 4-aminopyridine, glyburide, or tetraethylammonium. In an anesthetized rat model, BL-1249 (1 mg/kg i.v.) decreased the number of isovolumic contractions, without significantly affecting blood pressure. Thus, BL-1249 behaves as a potassium channel activator that exhibits bladder versus vascular selectivity both in vitro and in vivo. A survey of potassium channels exhibiting sensitivity to extracellular Ba2+ at millimolar concentration revealed that the expression of the K2P2.1 (TREK-1) channel was relatively high in human bladder cells versus human aortic cells, suggesting this channel as a possible candidate target for BL-1249.


Subject(s)
Muscle, Smooth/drug effects , Potassium Channels/agonists , Tetrahydronaphthalenes/pharmacology , Tetrazoles/pharmacology , Urinary Bladder/drug effects , Anesthesia , Animals , Barium/pharmacology , Blood Pressure/drug effects , Humans , Male , Membrane Potentials/drug effects , Myocytes, Cardiac/drug effects , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction
13.
Neurourol Urodyn ; 23(7): 709-15, 2004.
Article in English | MEDLINE | ID: mdl-15382198

ABSTRACT

AIMS: To examine the effects of 1-(2-pyrimidinyl)-piperazine (1-PP), a buspirone metabolite, on bladder function in vivo. METHODS: Micturition reflexes in the rat were evaluated in two models of bladder function; a constant infusion model employing 0.5% acetic acid and an isovolumic model. RESULTS: In the constant infusion model, 1-PP (0.14-1.32 mg/kg) dose-dependently and significantly decreased the number of bladder contractions measured during a 30 min recording period, with little effect on the pressure developed during each contraction. 1-PP is an alpha2-adrenergic receptor antagonist. The alpha2 antagonists BRL44408 (alpha2A vs. alpha2B selective; 0.3 and 1 mg/kg), imiloxan (alpha(2B) vs. alpha2A selective; 1 mg/kg), and yohimbine (non-subtype selective; 1 mg/kg; but not 0.3 mg/kg) also significantly reduced the number of contractions. Vehicle was without effect. In the isovolumic model, 1-PP (0.03-1.0 mg/kg) produced a dose-dependent and significant reduction in the number of bladder contractions recorded during a 15 min assessment period, with the maximum effect observed at 0.3 mg/kg. 1-PP had little effect on blood pressure; the only effect was observed at the highest dose (1 mg/kg) where it produced a transient 17% decrease in pressure. Cromakalim and tolterodine served as comparitors in all studies. CONCLUSIONS: 1-PP decreased the number of bladder contractions evoked by the micturition reflex at doses that had little effect on either the pressure developed during each bladd er contraction or on blood pressure. The effects of 1-PP are likely mediated primarily by alpha2 receptor antagonism.


Subject(s)
Buspirone/analogs & derivatives , Buspirone/pharmacology , Urinary Bladder/drug effects , ATP-Binding Cassette Transporters , Acetic Acid , Adrenergic alpha-2 Receptor Antagonists , Adrenergic alpha-Antagonists/pharmacology , Anesthesia , Animals , Benzhydryl Compounds/pharmacology , Cresols/pharmacology , Cromakalim/pharmacology , Dose-Response Relationship, Drug , Female , Imidazoles/pharmacology , Indoles/pharmacology , Isoindoles , KATP Channels , Muscarinic Antagonists/pharmacology , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Phenylpropanolamine/pharmacology , Potassium Channels/agonists , Potassium Channels, Inwardly Rectifying , Rats , Rats, Wistar , Tolterodine Tartrate , Urodynamics/drug effects , Yohimbine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...