Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Molecules ; 28(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37375353

ABSTRACT

Zinc oxide (ZnO) is an attractive semiconductor material for photocatalytic applications, owing to its opto-electronic properties. Its performances are, however, strongly affected by the surface and opto-electronic properties (i.e., surface composition, facets and defects), in turn related to the synthesis conditions. The knowledge on how these properties can be tuned and how they are reflected on the photocatalytic performances (activity and stability) is thus essential to achieve an active and stable material. In this work, we studied how the annealing temperature (400 °C vs. 600 °C) and the addition of a promoter (titanium dioxide, TiO2) can affect the physico-chemical properties of ZnO materials, in particular surface and opto-electronic ones, prepared through a wet-chemistry method. Then, we explored the application of ZnO as a photocatalyst in CO2 photoreduction, an appealing light-to-fuel conversion process, with the aim to understand how the above-mentioned properties can affect the photocatalytic activity and selectivity. We eventually assessed the capability of ZnO to act as both photocatalyst and CO2 adsorber, thus allowing the exploitation of diluted CO2 sources as a carbon source.

2.
ChemSusChem ; 15(13): e202200437, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35394696

ABSTRACT

The development of sustainable and efficient catalysts -namely Ru supported on activated biochars- is carried out for the selective hydrogenation of 5-hydroxymethylfurfural (HMF) to 1-hydroxy-2,5-hexanedione (HHD). Activated biochars obtained from pyrolysis and steam-based physical activation of two different biomasses from animal (leather tannery waste; ALw ) and vegetal (hazelnut shells; AHSw ) origins show completely different chemical, textural, and morphological properties. Compared to ALw , after impregnation with 0.5 wt % Ru, AHSw , with inner micro-mesochannels and cavities and higher layer stacking disorder, leads to better trapping and anchoring of Ru nanoparticles on the catalyst and a suitable Ru single crystal dispersion. This leads to a highly active Ru/AHSw catalyst in the proposed reaction, giving more than 80 % selectivity to HHD and full HMF conversion at 100 °C with 30 bar H2 for 3 h. Ru/AHSw also shows promising performance compared to a commercial Ru/C catalyst.


Subject(s)
Ruthenium , Catalysis , Charcoal , Furaldehyde/analogs & derivatives , Hexanones , Hydrogenation , Ruthenium/chemistry
3.
J Nanosci Nanotechnol ; 21(5): 2892-2900, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33653455

ABSTRACT

The combination of TiO2 and chitosan is known to allow the achievement of implantable devices which combines the mechanical properties of TiO2, with the presence of chitosan, which ensures antibacterial properties combined with an in-situ drug-delivery of biomolecules physisorbed and/or covalently linked to chitosan. In this study, 5-aminofluorescein (5-AF), a derivative of fluorescein containing a primary amino group, has been used as model molecule to simulate a drug. This dye is characterized by low cost and low toxicity, and due to its high molar absorptivity it can easily be detected by means of absorption and emission spectroscopies. The combination of 5-AF and maleic anhydride (MA) with TiO2-chitosan materials has generated a range of novel hybrid materials tailored to applications in localized stimuli-responsive drug delivery systems. Maleic anhydride has been used as pH sensitive spacer for the covalent functionalization of the TiO2-chitosan hybrid with MA as linker molecule. This functionalization allowed to obtain a pH-sensitive hybrid material. The efficiency of the functionalization has been verified by means of different physico-chemical characterization techniques. The behaviour of the functionalized materials is related to different parameters, among which the ratio between physisorbed/coordinated and chemisorbed 5-AF and the matrix degradation. Moreover, delivery tests in simulated body solutions at different pH have been performed showing a pH-sensitive drug delivery behaviour and indicating that the release of 5-AF is favoured at basic pH.


Subject(s)
Chitosan , Pharmaceutical Preparations , Drug Delivery Systems , Hydrogen-Ion Concentration , Titanium
4.
Molecules ; 24(23)2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31757106

ABSTRACT

This work deals with the formulation of environmentally friendly, cheap, and readily-available materials for green building applications, providing the function of air purificator by improving the safety and the comfort of an indoor environment. High surface area TiO2-SiO2 samples, prepared by a simple, cost effective, and scalable synthetic approach, proved to be effective in maximizing the properties of each component, i.e., the photocatalytic properties of titania and the high surface area of silica. TiO2 was introduced onto an ordered mesoporous silica Santa Barbara Amorphous-15 (SBA-15), that is featured by interesting insulating features, by using an incipient wetness impregnation method. The photocatalytic activity was evaluated in gas phase oxidation of ethylbenzene, which was selected as model volatile organic compound (VOC) molecule. The morphological, textural and structural features along with the electronic properties, the hydrophilicity and heat capacity of the materials were investigated in depth by scanning electron microscopy, powder X-ray diffraction, N2 physisorption, diffuse reflectance UV-Vis, FT-IR spectroscopies, and modulated DSC (MDSC) dynamic scan. Outstanding performances in the ethylbenzene abatement results are promising for further application in the green building sector.


Subject(s)
Air Pollutants/chemistry , Air Pollution, Indoor , Benzene Derivatives/chemistry , Construction Materials , Silicon Dioxide/chemistry , Titanium/chemistry , Oxidation-Reduction , Porosity
5.
Materials (Basel) ; 12(19)2019 Sep 23.
Article in English | MEDLINE | ID: mdl-31547485

ABSTRACT

Light-driven processes can be regarded as a promising technology for chemical production within the bio-refinery concept, due to the very mild operative conditions and high selectivity of some reactions. In this work, we report copper oxide (CuO)-titanium dioxide (TiO2) nanocomposites to be efficient and selective photocatalysts for ethanol photodehydrogenation under gas phase conditions, affording 12-fold activity improvement compared to bare TiO2. In particular, the insertion method of the CuO co-catalyst in different TiO2 materials and its effects on the photocatalytic activity were studied. The most active CuO co-catalyst was observed to be highly dispersed on titania surface, and highly reducible. Moreover, such high dispersion was observed to passivate some surface sites where ethanol is strongly adsorbed, thus improving the activity. This kind of material can be obtained by the proper selection of loading technique for both co-catalysts, allowing a higher coverage of photocatalyst surface (complex-precipitation in the present work), and the choice of titania material itself. Loading copper on a high surface area titania was observed to afford a limited ethanol conversion, due to its intrinsically higher reactivity affording to a strong interaction with the co-catalyst.

6.
Molecules ; 24(15)2019 Jul 30.
Article in English | MEDLINE | ID: mdl-31366018

ABSTRACT

Catalytic conversion of actual biomass to valuable chemicals is a crucial issue in green chemistry. This review discusses on the recent approach in the levulinic acid (LA) formation from three prominent generations of biomasses. Our paper highlights the impact of the nature of different types of biomass and their complex structure and impurities, different groups of catalyst, solvents, and reaction system, and condition and all related pros and cons for this process.


Subject(s)
Chlorophyta/chemistry , Crops, Agricultural/chemistry , Levulinic Acids/chemical synthesis , Lignin/chemistry , Rhodophyta/chemistry , Biomass , Catalysis , Green Chemistry Technology , Hydrolysis , Monosaccharides/chemistry , Polysaccharides/chemistry , Solvents/chemistry
7.
RSC Adv ; 9(38): 21660-21666, 2019 Jul 11.
Article in English | MEDLINE | ID: mdl-35518894

ABSTRACT

A two component three degree simplex lattice experimental design was employed to evaluate the impact of different mixing fractions of TiO2 and ZnO on an ordered mesoporous SBA-15 support for CO2 photoreduction. It was anticipated that the combined advantages of TiO2 and ZnO: low cost, non-toxicity and combined electronic properties would facilitate CO2 photoreduction. The fraction of ZnO had a statistically dominant impact on maximum CO2 adsorption (ß 2 = 22.65, p-value = 1.39 × 10-4). The fraction of TiO2 used had a statistically significant positive impact on CO (ß 1 = 9.71, p-value = 2.93 × 10-4) and CH4 (ß 1 = 1.43, p-value = 1.35 × 10-3) cumulative production. A negative impact, from the interaction term between the fractions of TiO2 and ZnO, was found for CH4 cumulative production (ß 3 = -2.64, p-value = 2.30 × 10-2). The systematic study provided evidence for the possible loss in CO2 photoreduction activity from sulphate groups introduced during the synthesis of ZnO. The decrease in activity is attributed to the presence of sulphate species in the ZnO prepared, which may possibly act as charge carrier and/or radical intermediate scavengers.

8.
Molecules ; 23(9)2018 Aug 31.
Article in English | MEDLINE | ID: mdl-30200287

ABSTRACT

The present paper reviews recent advances on the direct synthesis of 5-hydroxymethylfurfural (HMF) from different kinds of raw biomasses. In particular, in the paper HMF production from: (i) edible biomasses; (ii) non-edible lignocellulosic biomasses; (iii) food wastes (FW) have been reviewed. The different processes and catalytic systems have been reviewed and their merits, demerits and requirements for commercialisation outlined.


Subject(s)
Biomass , Furaldehyde/analogs & derivatives , Food , Furaldehyde/chemistry , Furaldehyde/metabolism , Glucans/chemistry , Glucans/metabolism , Lignin/chemistry , Lignin/metabolism , Waste Products/analysis
9.
Chemistry ; 18(34): 10653-60, 2012 Aug 20.
Article in English | MEDLINE | ID: mdl-22767402

ABSTRACT

A series of titanium oxides was prepared by using a surfactant-template method (STM) and used as a carrier for the sustained release of ibuprofen, which was chosen as a model drug. This STM provides an efficient route to TiO(2) matrices with both high surface area (when compared with those that were obtained by using traditional synthetic approaches) and well-defined mesoporous textures. Some parameters of the synthetic procedure were varied: pH value, surfactant, and thermal treatment. The physicochemical nature of the surface carriers were investigated by means of N(2) -physisorption measurements and FTIR spectroscopy. The effect of the amount of drug on the release kinetics was also investigated. The drug delivery was evaluated in vitro in four different physiological solutions (that simulated the gastrointestinal tract) to analyze the behavior of the TiO(2) -based systems if they were to be formulated as oral DDSs. Our optimized approach is a good alternative to the classical methods that are used to prepare efficient TiO(2) -based drug-delivery systems.


Subject(s)
Drug Carriers/chemical synthesis , Drug Delivery Systems/methods , Ibuprofen/administration & dosage , Titanium/chemistry , Drug Carriers/chemistry , Ibuprofen/chemistry , Models, Molecular , Surface-Active Agents/chemistry
10.
Chemistry ; 15(44): 12043-9, 2009 Nov 09.
Article in English | MEDLINE | ID: mdl-19774561

ABSTRACT

Pure and modified silica materials were synthesised by a sol-gel process and used as carrier for the controlled release of ibuprofen, selected as model drug. A one-step synthesis was optimised for the preparation of various silica-drug composites by using tetraethoxysilane and 3-aminopropyltriethoxysilane as precursors at different molar ratios. The presence of aminopropyl groups on the silica surface influences the drug-delivery rate leading to a high degree the desorption process controlled.


Subject(s)
Drug Carriers/chemistry , Organic Chemicals/chemistry , Silicon Dioxide/chemistry , Amines/chemistry , Delayed-Action Preparations , Ibuprofen/chemistry , Ibuprofen/metabolism , Phase Transition , Silanes/chemistry , Silica Gel , Spectroscopy, Fourier Transform Infrared
11.
ChemSusChem ; 1(4): 320-6, 2008.
Article in English | MEDLINE | ID: mdl-18605097

ABSTRACT

Gold-loaded zirconia and sulfated zirconia catalysts were tested in the low-temperature water gas shift reaction. The samples were characterized by N2 adsorption analysis, temperature-programmed reduction, X-ray diffraction, pulse-flow CO chemisorption, FTIR spectroscopy, and high-resolution transmission electron microscopy. A reference catalyst, Au/TiO2, provided by the World Gold Council was investigated for comparison. CO chemisorption and FTIR data indicate the presence of only highly dispersed gold clusters on the sulfated sample and both small clusters and small particles on the non-sulfated sample. Both gold-zirconia catalysts are much more active than the Au/TiO2 reference sample over all the temperature range investigated. The sample prepared on sulfated zirconia exhibits higher stability than the catalyst on unmodified zirconia. The prominent role in the water gas shift reaction of gold clusters in close contact with the support was deduced.


Subject(s)
Gases/chemistry , Gold/chemistry , Temperature , Water/chemistry , Zirconium/chemistry , Adsorption , Carbon Monoxide/chemistry , Carbonates/chemistry , Catalysis , Spectrophotometry, Infrared , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...