Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Handb Clin Neurol ; 175: 179-193, 2020.
Article in English | MEDLINE | ID: mdl-33008524

ABSTRACT

Sex differences are observed at many distinct biologic levels, such as in the anatomy and functioning of the brain, behavior, and susceptibility to neuropsychiatric disorders. Previously, these differences were believed to entirely result from the secretion of gonadal hormones; however, recent research has demonstrated that differences are also the consequence of direct or nonhormonal effects of genes located on the sex chromosomes. This chapter reviews the four core genotype model that separates the effects of hormones and sex chromosomes and highlights a few genes that are believed to be partly responsible for sex dimorphism of the brain, in particular, the Sry gene. Genetics of the brain's neurochemistry is discussed and the susceptibility to certain neurologic and psychiatric disorders is reviewed. Lastly, we discuss the sex-specific genetic contribution in disorders of sexual development. The precise molecular mechanisms underlying these differences are currently not entirely known. An increased knowledge and understanding of the role of candidate genes will undeniably be of great aid in elucidating the molecular basis of sex-biased disorders and potentially allow for more sex-specific therapies.


Subject(s)
Neuroanatomy , Sex Characteristics , Brain , Female , Genes, sry , Humans , Male , Sex Chromosomes/genetics
2.
Cereb Cortex ; 29(1): 372-382, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30357321

ABSTRACT

Parcellation of distinct areas in the cerebral cortex has a long history in neuroscience and is of great value for the study of brain function, specialization, and alterations in neuropsychiatric disorders. Analysis of cytoarchitectonical features has revealed their close association with molecular profiles based on protein density. This provides a rationale for the use of in vivo molecular imaging data for parcellation of the cortex with the advantage of whole-brain coverage. In the current work, parcellation was based on expression of key players of the serotonin neurotransmitter system. Positron emission tomography was carried out for the quantification of serotonin 1A (5-HT1A, n = 30) and 5-HT2A receptors (n = 22), the serotonin-degrading enzyme monoamine oxidase A (MAO-A, n = 32) and the serotonin transporter (5-HTT, n = 24) in healthy participants. Cortical protein distribution maps were obtained using surface-based quantification. Based on k-means clustering, silhouette criterion and bootstrapping, five distinct clusters were identified as the optimal solution. The defined clusters proved of high explanatory value for the effects of psychotropic drugs acting on the serotonin system, such as antidepressants and psychedelics. Therefore, the proposed method constitutes a sensible approach towards integration of multimodal imaging data for research and development in neuropharmacology and psychiatry.


Subject(s)
Cerebral Cortex/metabolism , Monoamine Oxidase/metabolism , Positron-Emission Tomography/methods , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT2A/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Adult , Cerebral Cortex/diagnostic imaging , Female , Humans , Male , Middle Aged , Molecular Imaging/methods , Serotonin/metabolism , Young Adult
3.
Hum Brain Mapp ; 38(2): 792-802, 2017 02.
Article in English | MEDLINE | ID: mdl-27770470

ABSTRACT

Altered serotonergic neurotransmission has been found to cause impulsive and aggressive behavior, as well as increased motor activity, all exemplifying key symptoms of ADHD. The main objectives of this positron emission tomography (PET) study were to investigate the serotonin transporter binding potential (SERT BPND ) in patients with ADHD and to assess associations of SERT BPND between the brain regions. 25 medication-free patients with ADHD (age ± SD; 32.39 ± 10.15; 10 females) without any psychiatric comorbidity and 25 age and sex matched healthy control subjects (33.74 ± 10.20) were measured once with PET and the highly selective and specific radioligand [11 C]DASB. SERT BPND maps in nine a priori defined ROIs exhibiting high SERT binding were compared between groups by means of a linear mixed model. Finally, adopted from structural and functional connectivity analyses, we performed correlational analyses using regional SERT binding potentials to examine molecular interregional associations between all selected ROIs. We observed significant differences in the interregional correlations between the precuneus and the hippocampus in patients with ADHD compared to healthy controls, using SERT BPND of the investigated ROIs (P < 0.05; Bonferroni corrected). When correlating SERT BPND and age in the ADHD and the healthy control group, we confirmed an age-related decline in brain SERT binding in the thalamus and insula (R2 = 0.284, R2 = 0.167, Ps < 0.05; Bonferroni corrected). The results show significantly different interregional molecular associations of the SERT expression for the precuneus with hippocampus in patients with ADHD, indicating presumably altered functional coupling. Altered interregional coupling between brain regions might be a sensitive approach to demonstrate functional and molecular alterations in psychiatric conditions. Hum Brain Mapp 38:792-802, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Attention Deficit Disorder with Hyperactivity/metabolism , Brain/diagnostic imaging , Positron-Emission Tomography , Serotonin Plasma Membrane Transport Proteins/metabolism , Adult , Brain/metabolism , Case-Control Studies , Female , Humans , Linear Models , Male , Psychiatric Status Rating Scales , Young Adult
4.
Hum Brain Mapp ; 37(3): 884-95, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26678348

ABSTRACT

Attention deficit hyperactivity disorder (ADHD) is a heterogeneous disorder with a strong genetic component. The norepinephrine transporter (NET) is a key target for ADHD treatment and the NET gene has been of high interest as a possible modulator of ADHD pathophysiology. Therefore, we conducted an imaging genetics study to examine possible effects of single nucleotide polymorphisms (SNPs) within the NET gene on NET nondisplaceable binding potential (BPND ) in patients with ADHD and healthy controls (HCs). Twenty adult patients with ADHD and 20 HCs underwent (S,S)-[18F]FMeNER-D2 positron emission tomography (PET) and were genotyped on a MassARRAY MALDI-TOF platform using the Sequenom iPLEX assay. Linear mixed models analyses revealed a genotype-dependent difference in NET BPND between groups in the thalamus and cerebellum. In the thalamus, a functional promoter SNP (-3081 A/T) and a 5'-untranslated region (5'UTR) SNP (-182 T/C), showed higher binding in ADHD patients compared to HCs depending on the major allele. Furthermore, we detected an effect of genotype in HCs, with major allele carriers having lower binding. In contrast, for two 3'UTR SNPs (*269 T/C, *417 A/T), ADHD subjects had lower binding in the cerebellum compared to HCs depending on the major allele. Additionally, symptoms of hyperactivity and impulsivity correlated with NET BPND in the cerebellum depending on genotype. Symptoms correlated positively with cerebellar NET BPND for the major allele, while symptoms correlated negatively to NET BPND in minor allele carriers. Our findings support the role of genetic influence of the NE system on NET binding to be pertubated in ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity/genetics , Attention Deficit Disorder with Hyperactivity/metabolism , Brain/diagnostic imaging , Brain/metabolism , Norepinephrine Plasma Membrane Transport Proteins/genetics , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Adult , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Brain Mapping , Cohort Studies , Female , Genotyping Techniques , Humans , Linkage Disequilibrium , Male , Morpholines , Polymorphism, Single Nucleotide , Positron-Emission Tomography , Promoter Regions, Genetic , Radiopharmaceuticals , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...