Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Chim Slov ; 69(2): 251-260, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35861067

ABSTRACT

Soft nanoparticles are an important class of material with potential to be used as carriers of active compounds. Swollen, penetrable particles can act as a host for the active ingredients and provide stability, stimuli-responsiveness and recyclability for the guest. Thermoresponsive colloidal gel particles are especially attractive for such applications due to the extremely soft structure, size and responsiveness. Poly(N-vinylcaprolactam) (PNVCL) is a much studied, popular thermoresponsive polymer. The polymer has low toxicity and the phase transition temperature is close to body temperature. During the phase transition, the polymer becomes less soluble, the particle expels a large part of water and the particle collapses to a more compact form. The diffusion of material in and from the particles is largely affected by this transition.  As the solubility of the polymer changes, so do the interactions with the loaded compound.  This feature article focuses on the synthetic methods, properties and applications of soft PNVCL particles.


Subject(s)
Caprolactam , Caprolactam/analogs & derivatives , Caprolactam/chemistry , Polymers/chemistry , Temperature , Water/chemistry
2.
Biomacromolecules ; 21(2): 955-965, 2020 02 10.
Article in English | MEDLINE | ID: mdl-31917581

ABSTRACT

Soft nanoparticles are interesting materials due to their size, deformability, and ability to host guest molecules. Surface properties play an essential role in determining the fate of the particles in biological medium, and coating of the nanoparticles (and polymers) with carbohydrates has been found to be an efficient strategy for increasing their biocompatibility and fine-tuning other important properties such as aqueous solubility. In this work, soft nanogels of poly(N-vinylcaprolactam), PNVCL, were surface-functionalized with different glucose and maltose ligands, and the colloidal properties of the gels were analyzed. The PNVCL nanogels were first prepared via semibatch precipitation polymerization, where a comonomer, propargyl acrylate (PA), was added after preparticle formation. The aim was to synthesize "clickable" nanogels with alkyne groups on their surfaces. The nanogels were then functionalized with two separate azido-glucosides and azido-maltosides (containing different linkers) through a copper-catalyzed azide-alkyne cycloaddition (CuAAc) click reaction. The glucose and maltose bearing nanogels were thermoresponsive and shrank upon heating. Compared to the PNVCL-PA nanogel, the carbohydrate bearing ones were larger, more hydrophilic, had volume phase transitions at higher temperatures, and were more stable against salt-induced precipitation. In addition to investigating the colloidal properties of the nanogels, the carbohydrate recognition was addressed by studying the interactions with a model lectin, concanavalin A (Con A). The binding efficiency was not affected by the temperature, which indicates that the carbohydrate moieties are located on the gel surfaces, and are capable of interacting with other biomolecules independent of temperature. Thus, the synthesis produces nanogels, which have surface functions capable of biorelevant interactions and a thermoresponsive structure. These types of particles can be used for drug delivery.


Subject(s)
Caprolactam/analogs & derivatives , Glucose/chemistry , Maltose/chemistry , Nanogels/chemistry , Polymers/chemistry , Caprolactam/chemistry , Caprolactam/metabolism , Colloids/chemistry , Colloids/metabolism , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Glucose/metabolism , Maltose/metabolism , Polymers/metabolism , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...