Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38498072

ABSTRACT

There has been a surge of interest in recent years in understanding the intricate mechanisms underlying cancer progression and treatment resistance. One molecule that has recently emerged in these mechanisms is MUC13 mucin, a transmembrane glycoprotein. Researchers have begun to unravel the molecular complexity of MUC13 and its impact on cancer biology. Studies have shown that MUC13 overexpression can disrupt normal cellular polarity, leading to the acquisition of malignant traits. Furthermore, MUC13 has been associated with increased cancer plasticity, allowing cells to undergo epithelial-mesenchymal transition (EMT) and metastasize. Notably, MUC13 has also been implicated in the development of chemoresistance, rendering cancer cells less responsive to traditional treatment options. Understanding the precise role of MUC13 in cellular plasticity, and chemoresistance could pave the way for the development of targeted therapies to combat cancer progression and enhance treatment efficacy.

2.
ACS Omega ; 8(42): 38839-38848, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37901538

ABSTRACT

Aberrant regulation of ß-catenin signaling is strongly linked with cancer proliferation, invasion, migration, and metastasis, thus, small molecules that can inhibit this pathway might have great clinical significance. Our molecular modeling studies suggest that ormeloxifene (ORM), a triphenylethylene molecule that docks with ß-catenin, and its brominated analogue (Br-ORM) bind more effectively with relatively less energy (-7.6 kcal/mol) to the active site of ß-catenin as compared to parent ORM. Herein, we report the synthesis and characterization of a Br-ORM by NMR and FTIR, as well as its anticancer activity in cervical cancer models. Br-ORM treatment effectively inhibited tumorigenic features (cell proliferation and colony-forming ability, etc.) and induced apoptotic death, as evident by pronounced PARP cleavage. Furthermore, Br-ORM treatment caused cell cycle arrest at the G1-S phase. Mechanistic investigation revealed that Br-ORM targets the key proteins involved in promoting epithelial-mesenchymal transition (EMT), as demonstrated by upregulation of E-cadherin and repression of N-cadherin, Vimentin, Snail, MMP-2, and MMP-9 expression. Br-ORM also represses the expression and nuclear subcellular localization of ß-catenin. Consequently, Br-ORM treatment effectively inhibited tumor growth in an orthotopic cervical cancer xenograft mouse model along with EMT associated changes as compared to vehicle control-treated mice. Altogether, experimental findings suggest that Br-ORM is a novel, promising ß-catenin inhibitor and therefore can be harnessed as a potent anticancer small molecule for cervical cancer treatment.

3.
Commun Biol ; 5(1): 1181, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36333531

ABSTRACT

There is increasing evidence suggesting the role of microbiome alterations in relation to pancreatic adenocarcinoma and tumor immune functionality. However, molecular mechanisms of the interplay between microbiome signatures and/or their metabolites in pancreatic tumor immunosurveillance are not well understood. We have identified that a probiotic strain (Lactobacillus casei) derived siderophore (ferrichrome) efficiently reprograms tumor-associated macrophages (TAMs) and increases CD8 + T cell infiltration into tumors that paralleled a marked reduction in tumor burden in a syngeneic mouse model of pancreatic cancer. Interestingly, this altered immune response improved anti-PD-L1 therapy that suggests promise of a novel combination (ferrichrome and immune checkpoint inhibitors) therapy for pancreatic cancer treatment. Mechanistically, ferrichrome induced TAMs polarization via activation of the TLR4 pathway that represses the expression of iron export protein ferroportin (FPN1) in macrophages. This study describes a novel probiotic based molecular mechanism that can effectively induce anti-tumor immunosurveillance and improve immune checkpoint inhibitors therapy response in pancreatic cancer.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Probiotics , Mice , Animals , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/metabolism , Adenocarcinoma/metabolism , Siderophores , Tumor Microenvironment , Ferrichrome/therapeutic use , Monitoring, Immunologic , Immune Checkpoint Inhibitors , Probiotics/pharmacology , Pancreatic Neoplasms
4.
ACS Omega ; 7(27): 23939-23949, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35847334

ABSTRACT

Nonsmall-cell lung cancer (NSCLC) is the most common type of lung cancer, with a dismal prognosis. NSCLC is a highly vascularized tumor, and chemotherapy is often hampered by the development of angiogenesis. Therefore, suppression of angiogenesis is considered a potential treatment approach. Tannic acid (TA), a natural polyphenol, has been demonstrated to have anticancer properties in a variety of cancers; however, its angiogenic properties have yet to be studied. Hence, in the current study, we investigated the antiproliferative and antiangiogenic effects of TA on NSCLC cells. The (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay revealed that TA induced a dose- and time-dependent decrease in the proliferation of A549 and H1299 cells. However, TA had no significant toxicity effects on human bronchial epithelial cells. Clonogenicity assay revealed that TA suppressed colony formation ability in NSCLC cells in a dose-dependent manner. The anti-invasiveness and antimigratory potential of TA were confirmed by Matrigel and Boyden chamber studies, respectively. Importantly, TA also decreased the ability of human umbilical vein endothelial cells (HUVEC) to form tube-like networks, demonstrating its antiangiogenic properties. Extracellular vascular endothelial growth factor (VEGF) release was reduced in TA-treated cells compared to that in control cells, as measured by the enzyme-linked immunosorbent assay (ELISA). Overall, these results demonstrate that TA can induce antiproliferative and antiangiogenic effects against NSCLC.

5.
Biomedicines ; 9(12)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34944630

ABSTRACT

Pancreatic cancer has the worst prognosis and lowest survival rate among all cancers. Pancreatic cancer cells are highly metabolically active and typically reprogrammed for aberrant glucose metabolism; thus they respond poorly to therapeutic modalities. It is highly imperative to understand mechanisms that are responsible for high glucose metabolism and identify natural/synthetic agents that can repress glucose metabolic machinery in pancreatic cancer cells, to improve the therapeutic outcomes/management of pancreatic cancer patients. We have identified a glycoside, steviol that effectively represses glucose consumption in pancreatic cancer cells via the inhibition of the translation initiation machinery of the molecular components. Herein, we report that steviol effectively inhibits the glucose uptake and lactate production in pancreatic cancer cells (AsPC1 and HPAF-II). The growth, colonization, and invasion characteristics of pancreatic cancer cells were also determined by in vitro functional assay. Steviol treatment also inhibited the tumorigenic and metastatic potential of human pancreatic cancer cells by inducing apoptosis and cell cycle arrest in the G1/M phase. The metabolic shift by steviol was mediated through the repression of the phosphorylation of mTOR and translation initiation proteins (4E-BP1, eIF4e, eIF4B, and eIF4G). Overall, the results of this study suggest that steviol can effectively suppress the glucose metabolism and translation initiation in pancreatic cancer cells to mitigate their aggressiveness. This study might help in the design of newer combination therapeutic strategies for pancreatic cancer treatment.

6.
Molecules ; 25(24)2020 Dec 13.
Article in English | MEDLINE | ID: mdl-33322162

ABSTRACT

COVID-19 is known as one of the deadliest pandemics of the century. The rapid spread of this deadly virus at incredible speed has stunned the planet and poses a challenge to global scientific and medical communities. Patients with COVID-19 are at an increased risk of co-morbidities associated with liver dysfunction and injury. Moreover, hepatotoxicity induced by antiviral therapy is gaining importance and is an area of great concern. Currently, alternatives therapies are being sought to mitigate hepatic damage, and there has been growing interest in the research on bioactive phytochemical agents (nutraceuticals) due to their versatility in health benefits reported in various epidemiological studies. Therefore, this review provides information and summarizes the juncture of antiviral, immunomodulatory, and hepatoprotective nutraceuticals that can be useful during the management of COVID-19.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Chemical and Drug Induced Liver Injury , Dietary Supplements , Pandemics , SARS-CoV-2 , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , COVID-19/epidemiology , Chemical and Drug Induced Liver Injury/diet therapy , Chemical and Drug Induced Liver Injury/epidemiology , Humans
7.
Nanomedicine ; 20: 102027, 2019 08.
Article in English | MEDLINE | ID: mdl-31170509

ABSTRACT

Pancreatic cancer (PanCa) is a major cause of cancer-related death due to limited therapeutic options. As pancreatic tumors are highly desmoplastic, they prevent appropriate uptake of therapeutic payloads. Thus, our objective is to develop a next-generation nanoparticle system for treating PanCa. We generated a multi-layered Pluronic F127 and polyvinyl alcohol stabilized and poly-L-lysine coated paclitaxel loaded poly(lactic-co-glycolic acid) nanoparticle formulation (PPNPs). This formulation exhibited optimal size (~160 nm) and negative Zeta potential (-6.02 mV), efficient lipid raft mediated internalization, pronounced inhibition in growth and metastasis in vitro, and in chemo-naïve and chemo-exposed orthotopic xenograft mouse models. Additionally, PPNPs altered nanomechanical properties of PanCa cells as suggested by the increased elastic modulus in nanoindentation analyses. Immunohistochemistry of orthotopic tumors demonstrated decreased expression of tumorigenic and metastasis associated proteins (ki67, vimentin and slug) in PPNPs treated mice. These results suggest that PPNPs represent a viable and robust platform for (PanCa).


Subject(s)
Nanoparticles/chemistry , Paclitaxel/therapeutic use , Pancreatic Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Endocytosis , Humans , Membrane Microdomains/metabolism , Mice, Nude , Neoplasm Invasiveness , Neoplasm Metastasis , Paclitaxel/pharmacology , Pancreatic Neoplasms/pathology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Xenograft Model Antitumor Assays
8.
Cancers (Basel) ; 11(3)2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30875788

ABSTRACT

Prostate cancer (PrCa) metastasis is the major cause of mortality and morbidity among men. Metastatic PrCa cells are typically adopted for aberrant glucose metabolism. Thus, chemophores that reprogram altered glucose metabolic machinery in cancer cells can be useful agent for the repression of PrCa metastasis. Herein, we report that cucurbitacin D (Cuc D) effectively inhibits glucose uptake and lactate production in metastatic PrCa cells via modulating glucose metabolism. This metabolic shift by Cuc D was correlated with decreased expression of GLUT1 by its direct binding as suggested by its proficient molecular docking (binding energy -8.5 kcal/mol). Cuc D treatment also altered the expression of key oncogenic proteins and miR-132 that are known to be involved in glucose metabolism. Cuc D (0.1 to 1 µM) treatment inhibited tumorigenic and metastatic potential of human PrCa cells via inducing apoptosis and cell cycle arrest in G2/M phase. Cuc D treatment also showed inhibition of tumor growth in PrCa xenograft mouse model with concomitant decrease in the expression of GLUT1, PCNA and restoration of miR-132. These results suggest that Cuc D is a novel modulator of glucose metabolism and could be a promising therapeutic modality for the attenuation of PrCa metastasis.

9.
Cells ; 9(1)2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31906106

ABSTRACT

Pancreatic cancer (PanCa) is one of the leading causes of death from cancer in the United States. The current standard treatment for pancreatic cancer is gemcitabine, but its success is poor due to the emergence of drug resistance. Natural products have been widely investigated as potential candidates in cancer therapies, and cucurbitacin D (Cuc D) has shown excellent anticancer properties in various models. However, there is no report on the therapeutic effect of Cuc D in PanCa. In the present study, we investigated the effects of the Cuc D on PanCa cells in vitro and in vivo. Cuc D inhibited the viability of PanCa cells in a dose and time dependent manner, as evident by MTS assays. Furthermore, Cuc D treatment suppressed the colony formation, arrest cell cycle, and decreased the invasion and migration of PanCa cells. Notably, our findings suggest that mucin 13 (MUC13) is down-regulated upon Cuc D treatment, as demonstrated by Western blot and qPCR analyses. Furthermore, we report that the treatment with Cuc D restores miR-145 expression in PanCa cells/tissues. Cuc D treatment suppresses the proliferation of gemcitabine resistant PanCa cells and inhibits RRM1/2 expression. Treatment with Cuc D effectively inhibited the growth of xenograft tumors. Taken together, Cuc D could be utilized as a novel therapeutic agents for the treatment/sensitization of PanCa.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Triterpenes/pharmacology , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacokinetics , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Disease Models, Animal , Drug Resistance, Neoplasm , Gene Expression Regulation/drug effects , Humans , Mice , Models, Molecular , Mucins/genetics , Mucins/metabolism , Pancreatic Neoplasms , Structure-Activity Relationship , Triterpenes/administration & dosage , Triterpenes/chemistry , Triterpenes/pharmacokinetics , Xenograft Model Antitumor Assays , Gemcitabine
10.
Mol Cancer Ther ; 16(10): 2267-2280, 2017 10.
Article in English | MEDLINE | ID: mdl-28615299

ABSTRACT

Ormeloxifene is a clinically approved selective estrogen receptor modulator, which has also shown excellent anticancer activity, thus it can be an ideal repurposing pharmacophore. Herein, we report therapeutic effects of ormeloxifene on prostate cancer and elucidate a novel molecular mechanism of its anticancer activity. Ormeloxifene treatment inhibited epithelial-to-mesenchymal transition (EMT) process as evident by repression of N-cadherin, Slug, Snail, vimentin, MMPs (MMP2 and MMP3), ß-catenin/TCF-4 transcriptional activity, and induced the expression of pGSK3ß. In molecular docking analysis, ormeloxifene showed proficient docking with ß-catenin and GSK3ß. In addition, ormeloxifene induced apoptosis, inhibited growth and metastatic potential of prostate cancer cells and arrested cell cycle in G0-G1 phase via modulation of cell-cycle regulatory proteins (inhibition of Mcl-1, cyclin D1, and CDK4 and induction of p21 and p27). In functional assays, ormeloxifene remarkably reduced tumorigenic, migratory, and invasive potential of prostate cancer cells. In addition, ormeloxifene treatment significantly (P < 0.01) regressed the prostate tumor growth in the xenograft mouse model while administered through intraperitoneal route (250 µg/mouse, three times a week). These molecular effects of ormeloxifene were also observed in excised tumor tissues as shown by immunohistochemistry analysis. Our results, for the first time, demonstrate repurposing potential of ormeloxifene as an anticancer drug for the treatment of advanced stage metastatic prostate cancer through a novel molecular mechanism involving ß-catenin and EMT pathway. Mol Cancer Ther; 16(10); 2267-80. ©2017 AACR.


Subject(s)
Benzopyrans/administration & dosage , Cell Proliferation/drug effects , Prostatic Neoplasms/drug therapy , beta Catenin/genetics , Animals , Apoptosis/drug effects , Benzopyrans/adverse effects , Cell Line, Tumor , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/drug effects , Humans , Male , Mice , Molecular Docking Simulation , Neoplasm Metastasis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , beta Catenin/chemistry
11.
J Gastrointest Surg ; 21(1): 94-105, 2017 01.
Article in English | MEDLINE | ID: mdl-27507554

ABSTRACT

INTRODUCTION: The functional significance of lost microRNAs has been reported in several human malignancies, including pancreatic cancer (PC). Our prior work has identified microRNA-145 (miR-145) as a tumor suppressor microRNA (miRNA) in pancreatic cancer. The restoration of miR-145 downregulates a number of oncogenes including mucin MUC13, a transmembrane glycoprotein that is aberrantly expressed in pancreatic cancer, thus efficiently inhibiting tumor growth in mice. However, lack of an effective tumor-specific delivery system remains an unmet clinical challenge for successful translation of microRNAs. METHODS: We developed a miRNA-145-based magnetic nanoparticle formulation (miR-145-MNPF) and assessed its anti-cancer efficacy. Physico-chemical characterization (dynamic light scattering (DLS), transmission electron microscopy (TEM) and miR-binding efficiency), cellular internalization (Prussian blue and confocal microscopy), miR-145 restitution potential (quantitative reverse-transcription PCR (qRT-PCR), and anti-cancer efficacy (proliferation, colony formation, cell migration, cell invasion assays) of this formulation were performed using clinically relevant pancreatic cancer cell lines (HPAF-II, AsPC-1). RESULTS: miR-145-MNPF exhibited optimal particle size and zeta potential which effectively internalized and restituted miR-145 in pancreatic cancer cells. miR-145 re-expression resulted in downregulation of MUC13, HER2, pAKT, and inhibition of cell proliferation, clonogenicity, migration, and invasion of pancreatic cancer cells. CONCLUSIONS: miR-145-MNPF is an efficient system for miR-145 delivery and restitution in pancreas cancer that may offer a potential therapeutic treatment for PC either alone or in conjunction with conventional treatment.


Subject(s)
Genetic Therapy/methods , Magnetite Nanoparticles/therapeutic use , MicroRNAs/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/therapy , Cell Line, Tumor , Cell Movement , Cell Proliferation , Down-Regulation , Gene Expression Regulation, Neoplastic , Humans , Mucins/genetics , Pancreatic Neoplasms/pathology , Real-Time Polymerase Chain Reaction
12.
Sci Rep ; 6: 36594, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27824155

ABSTRACT

In this study, we for the first time, investigated the potential anti-cancer effects of a novel analogue of cucurbitacin (Cucurbitacin D) against cervical cancer in vitro and in vivo. Cucurbitacin D inhibited viability and growth of cervical cancer cells (CaSki and SiHa) in a dose-dependent manner. IC50 of Cucurbitacin D was recorded at 400 nM and 250 nM in CaSki and SiHa cells, respectively. Induction of apoptosis was observed in Cucurbitacin D treated cervical cancer cells as measured by enhanced Annexin V staining and cleavage in PARP protein. Cucurbitacin D treatment of cervical cancer cells arrested the cell cycle in G1/S phase, inhibited constitutive expression of E6, Cyclin D1, CDK4, pRb, and Rb and induced the protein levels of p21 and p27. Cucurbitacin D also inhibited phosphorylation of STAT3 at Ser727 and Tyr705 residues as well as its downstream target genes c-Myc, and MMP9. Cucurbitacin D enhanced the expression of tumor suppressor microRNAs (miR-145, miRNA-143, and miRNA34a) in cervical cancer cells. Cucurbitacin D treatment (1 mg/kg body weight) effectively inhibited growth of cervical cancer cells derived orthotopic xenograft tumors in athymic nude mice. These results demonstrate the potential therapeutic efficacy of Cucurbitacin D against cervical cancer.


Subject(s)
Apoptosis/drug effects , G1 Phase Cell Cycle Checkpoints/drug effects , S Phase Cell Cycle Checkpoints/drug effects , Triterpenes/pharmacology , Uterine Cervical Neoplasms/drug therapy , Animals , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice, Nude , Neoplasm Proteins/biosynthesis , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Xenograft Model Antitumor Assays
13.
Sci Rep ; 6: 20051, 2016 Feb 03.
Article in English | MEDLINE | ID: mdl-26837852

ABSTRACT

Cervical cancer is one of the most common cancers among women worldwide. Current standards of care for cervical cancer includes surgery, radiation, and chemotherapy. Conventional chemotherapy fails to elicit therapeutic responses and causes severe systemic toxicity. Thus, developing a natural product based, safe treatment modality would be a highly viable option. Curcumin (CUR) is a well-known natural compound, which exhibits excellent anti-cancer potential by regulating many proliferative, oncogenic, and chemo-resistance associated genes/proteins. However, due to rapid degradation and poor bioavailability, its translational and clinical use has been limited. To improve these clinically relevant parameters, we report a poly(lactic-co-glycolic acid) based curcumin nanoparticle formulation (Nano-CUR). This study demonstrates that in comparison to free CUR, Nano-CUR effectively inhibits cell growth, induces apoptosis, and arrests the cell cycle in cervical cancer cell lines. Nano-CUR treatment modulated entities such as miRNAs, transcription factors, and proteins associated with carcinogenesis. Moreover, Nano-CUR effectively reduced the tumor burden in a pre-clinical orthotopic mouse model of cervical cancer by decreasing oncogenic miRNA-21, suppressing nuclear ß-catenin, and abrogating expression of E6/E7 HPV oncoproteins including smoking compound benzo[a]pyrene (BaP) induced E6/E7 and IL-6 expression. These superior pre-clinical data suggest that Nano-CUR may be an effective therapeutic modality for cervical cancer.


Subject(s)
Antineoplastic Agents/administration & dosage , Curcumin/administration & dosage , Lactic Acid/chemistry , Polyglycolic Acid/chemistry , Uterine Cervical Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Curcumin/chemistry , Curcumin/pharmacology , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lactic Acid/administration & dosage , Mice , MicroRNAs/genetics , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Polyglycolic Acid/administration & dosage , Polylactic Acid-Polyglycolic Acid Copolymer , Uterine Cervical Neoplasms/genetics , Xenograft Model Antitumor Assays
14.
J Pharm Bioallied Sci ; 7(Suppl 2): S752-5, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26538960

ABSTRACT

Odontogenic tumors (OTs) include entities of a hamartomatous nature, such as odontoma, benign neoplasms like an adenomatoid odontogenic tumor (AOT), some benign neoplasms are aggressive as in the case of ameloblastoma. The AOT is a rare odontogenic tumor constituting only 3% of all the OT and very often misdiagnosed as an odontogenic cyst. We report a case of an intra-osseous type of AOT occurred in a young 16-year-old female located in the anterior maxilla along with the clinical, radiological, histological features, and literature review related to the tumor affecting the patient.

15.
Oncotarget ; 5(17): 7599-609, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25277192

ABSTRACT

Pancreatic cancer has a poor prognosis due to late diagnosis and ineffective therapeutic multimodality. MUC13, a transmembrane mucin is highly involved in pancreatic cancer progression. Thus, understanding its regulatory molecular mechanisms may offer new avenue of therapy for prevention/treatment of pancreatic cancer. Herein, we report a novel microRNA (miR-145)-mediated mechanism regulating aberrant MUC13 expression in pancreatic cancer. We report that miR-145 expression inversely correlates with MUC13 expression in pancreatic cancer cells and human tumor tissues. miR-145 is predominantly present in normal pancreatic tissues and early Pancreatic Ductal Adenocarcinoma (PDAC) precursor lesions (PanIN I) and is progressively suppressed over the course of development from PanIN II/III to late stage poorly differentiated PDAC. We demonstrate that miR-145 targets 3' untranslated region of MUC13 and thus downregulates MUC13 protein expression in cells. Interestingly, transfection of miR-145 inhibits cell proliferation, invasion and enhances gemcitabine sensitivity. It causes reduction of HER2, P-AKT, PAK1 and an increase in p53. Similar results were found when MUC13 was specifically inhibited by shRNA directed at MUC13. Additionally, intratumoral injections of miR-145 in xenograft mice inhibited tumor growth via suppression of MUC13 and its downstream target, HER2. These results suggest miR-145 as a novel regulator of MUC13 in pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Gene Expression Regulation, Neoplastic/genetics , MicroRNAs/genetics , Mucins/biosynthesis , Pancreatic Neoplasms/genetics , Animals , Blotting, Western , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Fluorescent Antibody Technique , Heterografts , Humans , Immunohistochemistry , In Situ Hybridization , Mice , Mice, Nude , Microscopy, Confocal , Mucins/genetics , Neoplasm Invasiveness/genetics , Pancreatic Neoplasms/pathology , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...