Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(7): e0284377, 2023.
Article in English | MEDLINE | ID: mdl-37471433

ABSTRACT

Many studies have been conducted to produce microbial polyhydroxyalkanoates (PHA), a biopolymer, from Pseudomonas sp. fed with various alkanoic acids. Because this previous data was collected using methodologies that varied in critical aspects, such as culture media and size range of alkanoic acids, it has been difficult to compare the results for a thorough understanding of the relationship between feedstock and PHA production. Therefore, this study utilized consistent culture media with a wide range of alkanoic acids (C7-C14) to produce medium chain length PHAs. Three strains of Pseudomonas putida (NRRL B-14875, KT2440, and GN112) were used, and growth, cell dry weight, PHA titer, monomer distribution, and molecular weights were all examined. It was determined that although all the strains produced similar PHA titers using C7-C9 alkanoic acids, significant differences were observed with the use of longer chain feedstocks. Specifically, KT2440 and its derivative GN112 produced higher PHA titers compared to B-14875 when fed longer chain alkanoates. We also compared several analytical techniques for determining amounts of PHA and found they produced different results. In addition, the use of an internal standard had a higher risk of calculating inaccurate concentrations compared to an external standard. These observations highlight the importance of considering this aspect of analysis when evaluating different studies.


Subject(s)
Polyhydroxyalkanoates , Pseudomonas putida , Fatty Acids , Culture Media
2.
Int J Biol Macromol ; 168: 86-92, 2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33290766

ABSTRACT

Despite being used as a common platform for the commercial production of many biochemicals, Bacilli are often overlooked as a source of industrial polyhydroxyalkanoates (PHAs), biodegradable plastic replacements. In addition to having a robust expression system, the lack of lipopolysaccharides and ease of lysis make Bacilli an attractive host for the production of PHAs. In this work, a Bacillus megaterium strain was engineered to generate poly(3-hydroxybutyrate-co-4-hydroxybutryate) (P[3HB-co-4HB]) copolymers, which are among the most useful and industrially-relevant copolymers. These copolymers had lower modulus and increased toughness, thus making the copolymer suitable for a broader range of applications. Due to high metabolic flux through succinate, the engineered B. megaterium strain produced P(3HB-co-4HB) with >10% mol fraction 4HB from glucose, without the use of highly regulated and expensive precursors or potentially damaging truncation of central biochemical pathways.


Subject(s)
Hydroxybutyrates/metabolism , Polyhydroxyalkanoates/biosynthesis , Polyhydroxyalkanoates/metabolism , 3-Hydroxybutyric Acid/chemistry , Bacillus megaterium/metabolism , Cupriavidus/metabolism , Hydroxybutyrates/chemical synthesis , Polymers/chemistry , Succinic Acid/metabolism , Xylose/chemistry , Xylose/metabolism
3.
Int J Biol Macromol ; 87: 302-7, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26920242

ABSTRACT

Type II methanotrophic bacteria are a promising production platform for PHA biopolymers. These bacteria are known to produce pure poly-3-hydroxybutyrate homopolymer (PHB). We isolated a strain, Methylocystis sp. WRRC1, that was capable of producing a wide range of polyhydroxybutyrate-co-hydroxyvalerate copolymers (PHB-co-HV) when co-fed methane and valerate or n-pentanol. The ratio of HB to HV monomer was directly related to the concentration of valeric acid in the PHA accumulation media. We observed increased incorporation of HV and total polymer under copper-free growth conditions. The PHB-co-HV copolymers produced had decreased melting temperatures and crystallinity compared with methanotroph-produced PHB.


Subject(s)
Methylocystaceae/metabolism , Polyesters/chemistry , Biological Transport/drug effects , Copper/pharmacology , Methane/metabolism , Methylocystaceae/drug effects , Pentanoic Acids/metabolism , Pentanols/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...