Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Res ; 63(1): 73-82, 2014.
Article in English | MEDLINE | ID: mdl-24182336

ABSTRACT

Accumulation of adipose tissue in lower body lowers risk of cardiovascular and metabolic disorders. The molecular basis of this protective effect of gluteofemoral depot is not clear. The aim of this study was to compare the profile of expression of inflammation-related genes in subcutaneous gluteal (sGAT) and abdominal (sAAT) adipose tissue at baseline and in response to multiphase weight-reducing dietary intervention (DI). 14 premenopausal healthy obese women underwent a 6 months' DI consisting of 1 month very-low-calorie-diet (VLCD), subsequent 2 months' low-calorie-diet and 3 months' weight maintenance diet (WM). Paired samples of sGAT and sAAT were obtained before and at the end of VLCD and WM periods. mRNA expression of 17 genes (macrophage markers, cytokines) was measured using RT-qPCR on chip-platform. At baseline, there were no differences in gene expression of macrophage markers and cytokines between sGAT and sAAT. The dynamic changes induced by DI were similar in both depots for all genes except for three cytokines (IL6, IL10, CCL2) that differed in their response during weight maintenance phase. The results show that, in obese women, there are no major differences between sGAT and sAAT in expression of inflammation-related genes at baseline conditions and in response to the weight-reducing DI.


Subject(s)
Diet, Reducing , Gene Expression Regulation , Inflammation Mediators/metabolism , Obesity/metabolism , Subcutaneous Fat, Abdominal/metabolism , Adipose Tissue/metabolism , Adult , Body Weight/physiology , Buttocks/physiology , Diet, Reducing/methods , Female , Humans , Middle Aged , Obesity/diet therapy
2.
Physiol Res ; 62(5): 527-35, 2013.
Article in English | MEDLINE | ID: mdl-24020819

ABSTRACT

The aim of this study was to investigate the time-course of the expression of key lipolysis-regulating genes in the subcutaneous adipose tissue (SCAT) during different phases of a 6-month dietary intervention. Fifteen obese women (BMI 34.7+/-1.0 kg.m(-2)) underwent a 6-month dietary intervention consisting of 1 month very low calorie diet (VLCD), followed by 2 months low calorie diet (LCD) and 3 months weight maintenance diet (WM). At each phase of the dietary intervention, a needle microbiopsy of the abdominal SCAT was obtained to evaluate mRNA expression of key lipolysis-regulating genes and a hyperinsulinemic euglycemic clamp (HEC) was performed. Dietary intervention induced a body weight reduction of 9.8 % and an improvement of insulin sensitivity as assessed by a HEC. Compared to pre-diet levels, mRNA levels of the adrenergic beta(2)-receptor in SCAT were higher at the end of VLCD and not different at the end of LCD and WM. In contrast, the expression of the adrenergic alpha(2)-receptor was lower at the end of VLCD and LCD compared to the pre-diet levels and did not differ at WM. Adipose triglyceride lipase and hormone-sensitive lipase levels were lower than the pre-diet levels at the end of LCD only, while phosphodiesterase-3B and the insulin receptor levels did not change throughout the dietary intervention. The results suggest that the regulation pattern of the genes that are involved in the control of lipolysis is different at the respective phases of the dietary intervention and depends on the duration of the diet and the status of energy balance.


Subject(s)
Caloric Restriction , Lipolysis , Obesity/diet therapy , Subcutaneous Fat, Abdominal/metabolism , Energy Metabolism , Female , Gene Expression Regulation , Humans , Lipolysis/genetics , Obesity/genetics , Obesity/metabolism , RNA, Messenger/metabolism , Time Factors , Treatment Outcome , Weight Loss
3.
Diabetologia ; 54(4): 876-87, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21267541

ABSTRACT

AIMS/HYPOTHESIS: Our goal was to identify a set of human adipose tissue macrophage (ATM)-specific markers and investigate whether their gene expression in subcutaneous adipose tissue (SAT) as well as in visceral adipose tissue (VAT) is related to obesity and to the occurrence of the metabolic syndrome. METHODS: ATM-specific markers were identified by DNA microarray analysis of adipose tissue cell types isolated from SAT of lean and obese individuals. We then analysed gene expression of these markers by reverse transcription quantitative PCR in paired samples of SAT and VAT from 53 women stratified into four groups (lean, overweight, obese and obese with the metabolic syndrome). Anthropometric measurements, euglycaemic-hyperinsulinaemic clamp, blood analysis and computed tomography scans were performed. RESULTS: A panel of 24 genes was selected as ATM-specific markers based on overexpression in ATM compared with other adipose tissue cell types. In SAT and VAT, gene expression of ATM markers was lowest in lean and highest in the metabolic syndrome group. mRNA levels in the two fat depots were negatively correlated with glucose disposal rate and positively associated with indices of adiposity and the metabolic syndrome. CONCLUSIONS/INTERPRETATION: In humans, expression of ATM-specific genes increases with the degree of adiposity and correlates with markers of insulin resistance and the metabolic syndrome to a similar degree in SAT and in VAT.


Subject(s)
Adipose Tissue/cytology , Intra-Abdominal Fat/cytology , Intra-Abdominal Fat/metabolism , Macrophages/metabolism , Metabolic Syndrome/metabolism , Obesity/metabolism , Subcutaneous Fat/cytology , Subcutaneous Fat/metabolism , Adipose Tissue/metabolism , Adult , Aged , Cells, Cultured , Female , Humans , Middle Aged , Overweight/metabolism , Young Adult
4.
Physiol Res ; 60(1): 139-48, 2011.
Article in English | MEDLINE | ID: mdl-20945960

ABSTRACT

Adiponectin is an adipokine increasing glucose and fatty acid metabolism and improving insulin sensitivity. The aim of this study was to investigate the role of adiponectin in the regulation of adipocyte lipolysis. Human adipocytes isolated from biopsies obtained during surgical operations from 16 non-obese and 17 obese subjects were incubated with 1) human adiponectin (20 microg/ml) or 2) 0.5 mM AICAR - activator of AMPK (adenosine monophosphate activated protein kinase). Following these incubations, isoprenaline was added (10(-6) M) to investigate the influence of adiponectin and AICAR on catecholamine-induced lipolysis. Glycerol concentration was measured as lipolysis marker. We observed that adiponectin suppressed spontaneous lipolysis by 21 % and isoprenaline-induced lipolysis by 14 % in non-obese subjects. These effects were not detectable in obese individuals, but statistically significant differences in the effect of adiponectin between obese and non-obese were not revealed by two way ANOVA test. The inhibitory effect of AICAR and adiponectin on lipolysis was reversed by Compound C. Our results suggest, that adiponectin in physiological concentrations inhibits spontaneous as well as catecholamine-induced lipolysis. This effect might be lower in obese individuals and this regulation seems to involve AMPK.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adipocytes/enzymology , Isoproterenol/pharmacology , Adipocytes/drug effects , Adiponectin/pharmacology , Humans , Lipolysis/drug effects , Male , Middle Aged , Obesity/metabolism
5.
Int J Obes (Lond) ; 35(1): 91-8, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20531347

ABSTRACT

OBJECTIVE: Accumulation of adipose tissue macrophages (ATMs) is observed in obesity and may participate in the development of insulin resistance and obesity-related complications. The aim of our study was to investigate the effect of long-term dietary intervention on ATM content in human adipose tissue. DESIGN: We performed a multi-phase longitudinal study. SUBJECTS AND MEASUREMENTS: A total of 27 obese pre-menopausal women (age 39 ± 2 years, body mass index 33.7 ± 0.5 kg m(-2)) underwent a 6-month dietary intervention consisting of two periods: 4 weeks of very low-calorie diet (VLCD) followed by weight stabilization composed of 2 months of low-calorie diet and 3 to 4 months of weight maintenance diet. At baseline and at the end of each dietary period, samples of subcutaneous adipose tissue (SAT) were obtained by needle biopsy and blood samples were drawn. ATMs were determined by flow cytometry using combinations of cell surface markers. Selected cytokine and chemokine plasma levels were measured using enzyme-linked immunosorbent assay. In addition, in a subgroup of 16 subjects, gene expression profiling of macrophage markers in SAT was performed using real-time PCR. RESULTS: Dietary intervention led to a significant decrease in body weight, plasma insulin and C-reactive protein levels. After VLCD, ATM content defined by CD45+/14+/206+ did not change, whereas it decreased at the end of the intervention. This decrease was associated with a downregulation of macrophage marker mRNA levels (CD14, CD163, CD68 and LYVE-1 (lymphatic vessel endothelial hyaluronan receptor-1)) and plasma levels of monocyte-chemoattractant protein-1 (MCP-1) and CXCL5 (chemokine (C-X-C motif) ligand 5). During the whole dietary intervention, the proportion of two ATM subpopulations distinguished by the CD16 marker was not changed. CONCLUSION: A 6-month weight-reducing dietary intervention, but not VLCD, promotes a decrease in the number of the whole ATM population with no change in the relative distribution of ATM subsets.


Subject(s)
Adipose Tissue, White/pathology , Diet, Reducing , Macrophages/pathology , Obesity/pathology , Weight Loss , Adult , Body Mass Index , Body Weight , C-Reactive Protein/genetics , Chemokine CXCL5/genetics , Down-Regulation , Female , Flow Cytometry , Gene Expression Profiling , Humans , Longitudinal Studies , Obesity/diet therapy , Obesity/genetics , Real-Time Polymerase Chain Reaction , Vesicular Transport Proteins/genetics , Weight Loss/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...