Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Free Radic Biol Med ; 212: 255-270, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38122872

ABSTRACT

Reactive oxygen and nitrogen species (RONS) are a range of chemical individuals produced by living cells that contribute to the proper functioning of organisms. Cells under oxidative and nitrative stress show excessive production of RONS (including hydrogen peroxide, H2O2, hypochlorous acid, HOCl, and peroxynitrite, ONOO-) which may result in a damage proteins, lipids, and genetic material. Thus, the development of probes for in vivo detection of such oxidants is an active area of research, focusing on molecular redox sensors, including boronate-caged fluorophores. Here, we report a boronate-based styryl probe with a cationic pyridinium moiety (BANEP+) for the fluorescent detection of selected biological oxidants in vitro and in vivo. We compare the chemical reactivity of the BANEP+ probe toward H2O2, HOCl, and ONOO- and examine the influence of the major intracellular non-enzymatic antioxidant molecule, glutathione (GSH). We demonstrate that, at the physiologically relevant GSH concentration, the BANEP+ probe is efficiently oxidized by peroxynitrite, forming its phenolic derivative HNEP+. GSH does not affect the fluorescence properties of the BANEP+ and HNEP+ dyes. Finally, we report the identification of a novel type of molecular marker, with the boronate moiety replaced by the iodine atom, formed from the probe in the presence of HOCl and iodide anion. We conclude that the reported chemical reactivity and structural features of the BANEP+ probe may be a basis for the development of new red fluorescent probes for in vitro and in vivo detection of ONOO-.


Subject(s)
Oxidants , Peroxynitrous Acid , Humans , Peroxynitrous Acid/metabolism , Hydrogen Peroxide , Fluorescent Dyes/chemistry , Hypochlorous Acid , Reactive Nitrogen Species/chemistry , Inflammation
2.
Redox Biol ; 67: 102905, 2023 11.
Article in English | MEDLINE | ID: mdl-37820403

ABSTRACT

Inflammatory bowel diseases (IBD) are chronic intestinal disorders that result from an inappropriate inflammatory response to the microbiota in genetically susceptible individuals, often triggered by environmental stressors. Part of this response is the persistent inflammation and tissue injury associated with deficiency or excess of reactive oxygen species (ROS). The NADPH oxidase NOX1 is highly expressed in the intestinal epithelium, and inactivating NOX1 missense mutations are considered a risk factor for developing very early onset IBD. Albeit NOX1 has been linked to wound healing and host defence, many questions remain about its role in intestinal homeostasis and acute inflammatory conditions. Here, we used in vivo imaging in combination with inhibitor studies and germ-free conditions to conclusively identify NOX1 as essential superoxide generator for microbiota-dependent peroxynitrite production in homeostasis and during early endotoxemia. NOX1 loss-of-function variants cannot support peroxynitrite production, suggesting that the gut barrier is persistently weakened in these patients. One of the loss-of-function NOX1 variants, NOX1 p. Asn122His, features replacement of an asparagine residue located in a highly conserved HxxxHxxN motif. Modelling the NOX1-p22phox complex revealed near the distal heme an internal pocket restricted by His119 and Asn122 that is part of the oxygen reduction site. Functional studies in several human NADPH oxidases show that substitution of asparagine with amino acids with larger side chains is not tolerated, while smaller side chains can support catalytic activity. Thus, we identified a previously unrecognized structural feature required for the electron transfer mechanism in human NADPH oxidases.


Subject(s)
Asparagine , Inflammatory Bowel Diseases , Humans , Peroxynitrous Acid , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Inflammatory Bowel Diseases/genetics , Reactive Oxygen Species/metabolism , NADPH Oxidase 1/genetics
3.
Chem Res Toxicol ; 36(8): 1398-1408, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37534491

ABSTRACT

Myeloperoxidase (MPO) is an important component of the human innate immune system and the main source of a strong oxidizing and chlorinating species, hypochlorous acid (HOCl). Inadvertent, misplaced, or excessive generation of HOCl by MPO is associated with multiple human inflammatory diseases. Therefore, there is a considerable interest in the development of MPO inhibitors. Here, we report the synthesis and characterization of a boronobenzyl derivative of acetaminophen (AMBB), which can function as a proinhibitor of MPO and release acetaminophen, the inhibitor of chlorination cycle of MPO, in the presence of inflammatory oxidants, i.e., hydrogen peroxide, hypochlorous acid, or peroxynitrite. We demonstrate that the AMBB proinhibitor undergoes conversion to acetaminophen by all three oxidants, with the involvement of the primary phenolic product intermediate, with relatively long half-life at pH 7.4. The determined rate constants of the reaction of the AMBB proinhibitor with hydrogen peroxide, hypochlorous acid, or peroxynitrite are equal to 1.67, 1.6 × 104, and 1.0 × 106 M-1 s-1, respectively. AMBB showed lower MPO inhibitory activity (IC50 > 0.3 mM) than acetaminophen (IC50 = 0.14 mM) toward MPO-dependent HOCl generation. Finally, based on the determined reaction kinetics and the observed inhibitory effects of two plasma components, uric acid and albumin, on the extent of AMBB oxidation by ONOO- and HOCl, we conclude that ONOO- is the most likely potential activator of AMBB in human plasma.


Subject(s)
Acetaminophen , Oxidants , Humans , Oxidants/pharmacology , Acetaminophen/pharmacology , Hypochlorous Acid , Hydrogen Peroxide/pharmacology , Peroxidase/metabolism , Peroxynitrous Acid , Oxidation-Reduction
4.
Int J Mol Sci ; 24(13)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37446300

ABSTRACT

Clopidogrel is a chiral compound widely used as an antiplatelet medication that lowers the risk of blood clots, strokes, and heart attacks. The main aim of the study presented herein was to obtain (S)-clopidogrel, which is commercially available in treatments, via the kinetic resolution of racemic clopidogrel carboxylic acid with the use of lipase from Candida rugosa and a two-phase reaction medium containing an ionic liquid. For this purpose, the enantioselective biotransformation of clopidogrel carboxylic acid and chiral chromatographic separation with the use of a UPLC-MS/MS system were optimized. The best kinetic resolution parameters were obtained by using a catalytic system containing lipase from Candida rugosa OF as a biocatalyst, cyclohexane and [EMIM][BF4] as a two-phase reaction medium, and methanol as an acyl acceptor. The enantiomeric excess of the product was eep = 94.21% ± 1.07 and the conversion was c = 49.60% ± 0.57%, whereas the enantioselectivity was E = 113.40 ± 1.29. The performed study proved the possibility of obtaining (S)-clopidogrel with the use of lipase as a biocatalyst and a two-phase reaction medium containing an ionic liquid, which is in parallel with green chemistry methodology and does not require environmentally harmful conditions.


Subject(s)
Ionic Liquids , Clopidogrel , Chromatography, Liquid , Tandem Mass Spectrometry , Lipase/metabolism , Stereoisomerism
5.
Polymers (Basel) ; 15(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36772048

ABSTRACT

This work evaluates the effects of accelerated aging on the discolouration of surface-treated spruce wood and oak wood coated with solvent-based polyurethane lacquers, and surface-treated spruce wood coated with water-based transparent coating systems. All concerned coating materials were intended for indoor use. It was also explored how the colour stability of spruce wood and oak wood surfaces treated with solvent-based polyurethane lacquers was affected by wood surface layer modifications with pigment or stain mordants applied before these lacquers. Another issue studied was how the lignin stabilizer admixed into the primer and pigments admixed into the top coating layers affected the stability of water-based coating systems on spruce. The experimental results showed that the accelerated aging process with a simulation of indoor conditions induced significant discolouration of wood surfaces coated with solvent-based polyurethane lacquers and water-based coating systems. There were also confirmed significant impacts of all the studied factors (wood species, lacquer/coating system type, lacquer modification, wood pre-treatment with pigment and stain mordants). The spruce wood surfaces coated with solvent-based polyurethane lacquers were less stable (ΔE = 10-19, dependent on the lacquer type) than the oak surfaces treated in the same ways (ΔE = 4-11). There were also confirmed significant impacts of the particular surface treatment on the colour stability as well as significant impacts of wood surface pre-treatment with pigment and stain mordants (ΔE = 4-17-for spruce wood, and ΔE = 5.5-13-for oak wood). In the case of water-based lacquers, the ΔE values ranged between 3 and 11 (according to the coating system type). The results show that an appropriate UV absorbent combined with an appropriate lignin stabilizer and pigment mordant may enable attaining the required colour stability for a given surface treatment applied on a given wood species.

6.
Polymers (Basel) ; 16(1)2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38201738

ABSTRACT

Nowadays, the emphasis is on increasing the durability of all products. For this reason, it is also advisable to look into extending the durability of paper products. The main reason for using flax pulp is that flax and cotton pulp are widely used for the production of banknotes due to their higher strength. This paper deals with flax pulp with the addition of nanocellulose, which should further enhance the mechanical properties of the pulp. The tensile strength, breaking length, and tensile energy absorption index were evaluated as the key mechanical properties. At the same time, the effect of the addition of nanocellulose, whether it was added to the pulp mass or applied to the later produced paper as a spray or coating, was tested in comparison to paper without the addition of nanocellulose. The best mechanical properties, i.e., tensile strength, were achieved for the highest addition of 5% of nanocellulose into the pulp, at 24.3 Nm∙g-1, and for the coating application, at 28.7 Nm∙g-1, compared to the flax pulp without the addition, where the tensile strength was 20.5 Nm∙g-1. The results of this research are used for the assessment of nanocellulose as a natural compatible additive to enhance the strength properties of cellulose-based materials.

7.
Int J Mol Sci ; 23(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36555291

ABSTRACT

Currently, emphasis is placed on using environmentally friendly materials both from a structural point of view and the application of protective means. For this reason, it is advisable to deal with the thermal modification of wood, which does not require the application of protective substances, to increase its service life. The main reason for the thermal modification of black locust is that although black locust grows abundantly in our country, it has no industrial use. It is mainly used outdoors, where thermal modification could increase its resistance. This article deals with the thermal modification of black locust wood (Robinia pseudoacacia L.) and the impact of this modification on the chemical components of the wood with an overlap in the change in mechanical properties compared to untreated wood. Static (LOP, MOR, and MOE) and dynamic (IBS) bending properties were evaluated as representative mechanical properties. At the same time, the impact of thermal modification on the representation of chemical components of wood (cellulose, lignin, hemicellulose) was also tested. As a result of the heat treatment, the mechanical properties gradually decreased as the temperature increased. The highest decrease in mechanical values found at 210 °C was 43.7% for LOP and 45.1% for MOR. Thermal modification caused a decrease in the content of wood polysaccharides (the decrease in hemicelluloses content was 33.2% and the drop in cellulose was about 29.9% in samples treated at 210 °C), but the relative amount of lignin in the wood subjected to increased temperature was higher due to autocondensation, and mainly because of polysaccharide loss. Based on the correlations between chemical and mechanical changes caused by thermal modification, it is possible to observe the effects of reducing the proportions of chemical components and changes in their characteristic properties (DP, TCI) on the reduction in mechanical properties. The results of this research serve to better understand the behavior of black locust wood during thermal modification, which can primarily be used to increase its application use.


Subject(s)
Lignin , Robinia , Lignin/analysis , Wood/chemistry , Cellulose/chemistry , Temperature
8.
Front Chem ; 10: 930657, 2022.
Article in English | MEDLINE | ID: mdl-35864868

ABSTRACT

Azanone (HNO, also known as nitroxyl) is the protonated form of the product of one-electron reduction of nitric oxide (•NO), and an elusive electrophilic reactive nitrogen species of increasing pharmacological significance. Over the past 20 years, the interest in the biological chemistry of HNO has increased significantly due to the numerous beneficial pharmacological effects of its donors. Increased availability of various HNO donors was accompanied by great progress in the understanding of HNO chemistry and chemical biology. This review is focused on the chemistry of HNO, with emphasis on reaction kinetics and mechanisms in aqueous solutions.

9.
Sci Rep ; 12(1): 9314, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35660769

ABSTRACT

MPO-derived oxidants including HOCl contribute to tissue damage and the initiation and propagation of inflammatory diseases. The search for small molecule inhibitors of myeloperoxidase, as molecular tools and potential drugs, requires the application of high throughput screening assays based on monitoring the activity of myeloperoxidase. In this study, we have compared three classes of fluorescent probes for monitoring myeloperoxidase-derived hypochlorous acid, including boronate-, aminophenyl- and thiol-based fluorogenic probes and we show that all three classes of probes are suitable for this purpose. However, probes based on the coumarin fluorophore turned out to be not reliable indicators of the inhibitors' potency. We have also determined the rate constants of the reaction between HOCl and the probes and they are equal to 1.8 × 104 M-1s-1 for coumarin boronic acid (CBA), 1.1 × 104 M-1s-1 for fluorescein based boronic acid (FLBA), 3.1 × 104 M-1s-1 for 7-(p-aminophenyl)-coumarin (APC), 1.6 × 104 M-1s-1 for 3'-(p-aminophenyl)-fluorescein (APF), and 1 × 107 M-1s-1 for 4-thiomorpholino-7-nitrobenz-2-oxa-1,3-diazole (NBD-TM). The high reaction rate constant of NBD-TM with HOCl makes this probe the most reliable tool to monitor HOCl formation in the presence of compounds showing HOCl-scavenging activity.


Subject(s)
Hypochlorous Acid , Peroxidase , Boronic Acids , Coumarins , Fluoresceins , Fluorescent Dyes
10.
Cardiol J ; 29(3): 432-440, 2022.
Article in English | MEDLINE | ID: mdl-32207836

ABSTRACT

BACKGROUND: Numerous worldwide clinical trials have proven the indisputably negative influence of morphine on the pharmacokinetics and pharmacodynamics of P2Y12 receptor inhibitors in patients presenting with acute coronary syndromes. The aim of this trial was to evaluate whether oral coadministration of an anti-opioid agent, naloxone, can be considered a successful approach to overcome 'the morphine effect'. METHODS: Consecutive unstable angina patients receiving ticagrelor and morphine with or without orally administered naloxone underwent assessment of platelet reactivity using Multiplate analyzer as well as evaluation of the pharmacokinetic profile of ticagrelor and its active metabolite, AR-C124910XX, at 9 pre-defined time points within the first 6 hours following oral intake of the ticagrelor loading dose. RESULTS: The trial shows no significant differences regarding the pharmacokinetics of ticagrelor between both study arms throughout the study period. AR-C124910XX plasma concentration was significantly higher 120 min after the ticagrelor loading dose administration (p = 0.0417). However, the evaluation of pharmacodynamics did not show any statistically significant differences between the study arms. CONCLUSIONS: To conclude, this trial shows that naloxone co-administration in ticagrelor-treated acute coronary syndrome patients on concomitant treatment with morphine shows no definite superiority in terms of ticagrelor pharmacokinetic and pharmacodynamic profile.


Subject(s)
Acute Coronary Syndrome , Acute Coronary Syndrome/diagnosis , Acute Coronary Syndrome/drug therapy , Humans , Morphine/adverse effects , Naloxone , Narcotics , Platelet Aggregation Inhibitors , Purinergic P2Y Receptor Antagonists/adverse effects , Ticagrelor
11.
Free Radic Biol Med ; 179: 34-46, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34923103

ABSTRACT

Peroxynitrite (ONOO-) has been implicated in numerous pathologies associated with an inflammatory component, but its selective and sensitive detection in biological settings remains a challenge. Here, the development of a new water-soluble and cationic boronate probe based on a coumarin-imidazolium scaffold (CI-Bz-BA) for the fluorescent detection of ONOO- in cells is reported. The chemical reactivity of the CI-Bz-BA probe toward selected oxidants known to react with the boronate moiety was characterized, and the suitability of the probe for the direct detection of ONOO- in cell-free and cellular system is reported. Oxidation of the probe results in the formation of the primary hydroxybenzyl product (CI-Bz-OH), followed by the spontaneous elimination of the quinone methide moiety to produce the secondary phenol (CI-OH), which is accompanied by a red shift in the fluorescence emission band from 405 nm to 481 nm. CI-Bz-BA reacts with ONOO- stoichiometrically with a rate constant of ∼1 × 106 M-1s-1 to form, in addition to the major phenolic product CI-OH, the minor nitrated product CI-Bz-NO2, which is not formed by other oxidants tested or via myeloperoxidase-catalyzed oxidation/nitration. Both CI-OH and CI-Bz-NO2 products were also formed in the presence of cogenerated fluxes of nitric oxide and superoxide radical anion produced during decomposition of a SIN-1 donor. Using RAW 264.7 cells, we demonstrate the ability of the probe to report endogenously produced ONOO-via fluorescence measurements, including plate reader real time monitoring and two-photon fluorescence imaging. Liquid chromatography/mass spectrometry analyses of cell extracts and media confirmed the formation of both CI-OH and CI-Bz-NO2 in macrophages activated to produce ONOO-. We propose the use of a combination of real-time monitoring of probe oxidation using fluorimetry and fluorescence microscopy with liquid chromatography/mass spectrometry-based product identification for rigorous detection and quantitative analyses of ONOO- in biological systems.


Subject(s)
Peroxynitrous Acid , Water , Coumarins , Fluorescent Dyes , Oxidation-Reduction , Superoxides
12.
Int J Mol Sci ; 22(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34884784

ABSTRACT

Azanone (HNO) is an elusive electrophilic reactive nitrogen species of growing pharmacological and biological significance. Here, we present a comparative kinetic study of HNO reactivity toward selected cyclic C-nucleophiles under aqueous conditions at pH 7.4. We applied the competition kinetics method, which is based on the use of a fluorescein-derived boronate probe FlBA and two parallel HNO reactions: with the studied scavenger or with O2 (k = 1.8 × 104 M-1s-1). We determined the second-order rate constants of HNO reactions with 13 structurally diverse C-nucleophiles (k = 33-20,000 M-1s-1). The results show that the reactivity of HNO toward C-nucleophiles depends strongly on the structure of the scavenger. The data are supported with quantum mechanical calculations. A comprehensive discussion of the HNO reaction with C-nucleophiles is provided.


Subject(s)
Boronic Acids/chemistry , Cyclohexanones/chemistry , Hydroxamic Acids/chemistry , Nitrogen Oxides/chemistry , Reactive Nitrogen Species/chemistry , Sulfonamides/chemistry , Nitrates/chemistry , Peroxynitrous Acid/chemistry
13.
Methods Mol Biol ; 2275: 315-327, 2021.
Article in English | MEDLINE | ID: mdl-34118047

ABSTRACT

The development of boronic probes enabled reliable detection and quantitative analysis of hydrogen peroxide , other nucleophilic hydroperoxides, hypochlorite , and peroxynitrite . The major product, in which boronate moiety of the probe is replaced by the hydroxyl group, is, however, common for all those oxidants. Here, we describe how ortho-isomer of mitochondria-targeted phenylboronic acid can be used to detect and differentiate peroxynitrite-dependent and independent probe oxidation. This method highlights detection and quantification of both the major, phenolic product and the minor, peroxynitrite-specific cyclic and nitrated products of probe oxidation.


Subject(s)
Boronic Acids/chemistry , Mitochondria/chemistry , Peroxynitrous Acid/analysis , Animals , Chromatography, High Pressure Liquid , Hydrogen Peroxide , Isotope Labeling , Mice , Oxidation-Reduction , RAW 264.7 Cells , Tandem Mass Spectrometry
14.
Cell Biochem Biophys ; 79(4): 845-856, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33950351

ABSTRACT

HNO (nitroxyl, IUPAC name azanone) is an electrophilic reactive nitrogen species of growing pharmacological and biological significance. Here, we present data on the pH-dependent kinetics of azanone reactions with the low molecular thiols glutathione and N-acetylcysteine, as well as with important serum proteins: bovine serum albumin and human serum albumin. The competition kinetics method used is based on two parallel HNO reactions: with RSH/RS- or with O2. The results provide evidence that the reaction of azanone with the anionic form of thiols (RS-) is favored over reactions with the protonated form (RSH). The data are supported with quantum mechanical calculations. A comprehensive discussion of the HNO reaction with thiolates is provided.


Subject(s)
Sulfhydryl Compounds
15.
Free Radic Biol Med ; 169: 24-35, 2021 06.
Article in English | MEDLINE | ID: mdl-33862158

ABSTRACT

A new naphthalene-based boronate probe, NAB-BE, for the fluorescence-based detection of inflammatory oxidants, including peroxynitrite, hypochlorous acid, and hydrogen peroxide, is reported. The chemical reactivity and fluorescence properties of the probe and the products are described. The major, phenolic oxidation product, NAB-OH, is formed in case of all three oxidants tested. This product shows green fluorescence, with a maximum at 512 nm, and can be excited either at 340 nm or in the near infrared region (745 nm) for two-photon fluorescence imaging. Peroxynitrite is the fastest of the oxidants tested and, in addition to the phenolic product, leads to the formation of a nitrated product, NAB-NO2, which can serve as a fingerprint for peroxynitrite. The probe was applied to detect peroxynitrite in activated macrophages using fluorimetry and two-photon fluorescence microscopy, and both NAB-OH and NAB-NO2 products were detected in cell extracts by liquid chromatography-mass spectrometry. The combined use of fluorometric high-throughput analyses, fluorescence imaging, and liquid chromatography-mass spectrometry-based product identification and quantitation is proposed for most comprehensive and rigorous characterization of oxidants in biological systems.


Subject(s)
Fluorescent Dyes , Peroxynitrous Acid , Hydrogen Peroxide , Hypochlorous Acid , Oxidation-Reduction
16.
Front Chem ; 8: 580899, 2020.
Article in English | MEDLINE | ID: mdl-33102447

ABSTRACT

Boronate-based molecular probes are emerging as one of the most effective tools for detection and quantitation of peroxynitrite and hydroperoxides. This review discusses the chemical reactivity of boronate compounds in the context of their use for detection of biological oxidants, and presents examples of the practical use of those probes in selected chemical, enzymatic, and biological systems. The particular reactivity of boronates toward nucleophilic oxidants makes them a distinct class of probes for redox biology studies. We focus on the recent progress in the design and application of boronate-based probes in redox studies and perspectives for further developments.

17.
Sci Rep ; 10(1): 18626, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33122809

ABSTRACT

Hydroethidine (HE) and hydropropidine ([Formula: see text]) are fluorogenic probes used for the detection of the intra- and extracellular superoxide radical anion ([Formula: see text]). In this study, we provide evidence that HE and [Formula: see text] react rapidly with the biologically relevant radicals, including the hydroxyl radical, peroxyl radicals, the trioxidocarbonate radical anion, nitrogen dioxide, and the glutathionyl radical, via one-electron oxidation, forming the corresponding radical cations. At physiological pH, the radical cations of the probes react rapidly with [Formula: see text], leading to the specific 2-hydroxylated cationic products. We determined the rate constants of the reaction between [Formula: see text] and the radical cations of the probes. We also synthesized N-methylated analogs of [Formula: see text] and HE which were used in mechanistic studies. Methylation of the amine groups was not found to prevent the reaction between the radical cation of the probe and the superoxide, but it significantly increased the lifetime of the radical cation and had a substantial effect on the profiles of the oxidation products by inhibiting the formation of dimeric products. We conclude that the N-methylated analogs of HE and [Formula: see text] may be used as a scaffold for the design of a new generation of probes for intra- and extracellular superoxide.

18.
Molecules ; 25(8)2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32331398

ABSTRACT

Binding and transport of ligands is one of the most important functions of human blood serum proteins. Human serum albumin is found in plasma at the highest concentration. Because of this, it is important to study protein-drug interactions for this albumin. Since there is no single model describing this interaction, it is necessary to measure it for each active substance. Drug binding should also be studied in conditions that simulate pathological conditions of the body, i.e., after oxidative stress. Due to this, it is expected that the methods for testing these interactions need to be easy and fast. In this study, albumin immobilized on magnetic nanoparticles was successfully applied in the study of protein-drug binding. Ketoprofen was selected as a model drug and interactions were tested under normal conditions and artificially induced oxidative stress. The quality of obtained results for immobilized protein was confirmed with those for free albumin and literature data. It was shown that the type of magnetic core coverage does not affect the quality of the obtained results. In summary, a new, fast, effective, and universal method for testing protein-drug interactions was proposed, which can be performed in most laboratories.


Subject(s)
Ketoprofen/chemistry , Magnetite Nanoparticles/chemistry , Oxidative Stress , Serum Albumin/chemistry , Binding Sites , Carrier Proteins , Chromatography, High Pressure Liquid , Coated Materials, Biocompatible , Humans , Models, Molecular , Molecular Conformation , Molecular Structure , Polysaccharides/chemistry , Protein Binding
19.
Eur J Med Chem ; 184: 111765, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31629163

ABSTRACT

Synthesis and investigation of anti-Toxoplasma gondii activity of novel thiazoles containing benzo [b]thiophene moiety are presented. Among the derivatives, compound 3k with adamantyl group shows exceptionally high potency against Me49 strain with IC50 (8.74 µM) value which is significantly lower than the activity of trimethoprim (IC50 39.23 µM). In addition, compounds 3a, 3b and 3k showed significant activity against RH strain (IC50 51.88-83.49 µM). The results of the cytotoxicity evaluation showed that Toxoplasma gondii growth was inhibited at non-cytotoxic concentrations for the mammalian L929 fibroblast (CC30 ∼ 880 µM). The most active compound 3k showed tyrosinase inhibition effect, with IC50 value of 328.5 µM. The binding energies calculated for compounds 3a-3e, 3k are strongly correlated with the experimentally determined values of tyrosinase inhibition activity. Moreover, the binding energies corresponding to the same ligands and calculated for both tyrosinase and tyrosine hydroxylase are also correlated with each other, suggesting that tyrosinase inhibitors may also have an inhibitory effect on tyrosine hydroxylase. Compounds 3j and 3k have also very strong antioxidant activity (IC50 15.9 and 15.5 µM), respectively, which is ten times higher than well-known antioxidant BHT.


Subject(s)
Antioxidants/pharmacology , Antiprotozoal Agents/pharmacology , Enzyme Inhibitors/pharmacology , Thiazoles/pharmacology , Thiophenes/pharmacology , Toxoplasma/drug effects , Animals , Antioxidants/chemical synthesis , Antioxidants/chemistry , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Mice , Molecular Docking Simulation , Molecular Structure , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Structure-Activity Relationship , Thiazoles/chemistry , Thiophenes/chemistry , Toxoplasma/enzymology , Toxoplasma/growth & development , Tyrosine 3-Monooxygenase/antagonists & inhibitors , Tyrosine 3-Monooxygenase/metabolism
20.
Materials (Basel) ; 12(19)2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31547179

ABSTRACT

This study provides a solution for the utilization of two waste materials, namely the residues of soft polyurethane foam from the production of mattresses and winter wheat husks. Thermal insulation panels with a nominal density of 50-150 kg/m3, bonded one-component moisture curing polyurethane adhesive, were developed, and the effect of the ratio between recycled polyurethane foam and winter wheat husk on internal bond strength, compressive stress at 10% strain, water uptake, coefficient of thermal conductivity, and volumetric heat capacity was observed. The developed composite materials make use of the very good thermal insulation properties of the two input waste materials, and the coefficient of thermal conductivity of the resulting boards achieves excellent values, namely 0.0418-0.0574 W/(m.K). The developed boards can be used as thermal insulation in the structures of environmentally friendly buildings.

SELECTION OF CITATIONS
SEARCH DETAIL
...