Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 12(1): 2129, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33837185

ABSTRACT

Given two quantum channels, we examine the task of determining whether they are compatible-meaning that one can perform both channels simultaneously but, in the future, choose exactly one channel whose output is desired (while forfeiting the output of the other channel). Here, we present several results concerning this task. First, we show it is equivalent to the quantum state marginal problem, i.e., every quantum state marginal problem can be recast as the compatibility of two channels, and vice versa. Second, we show that compatible measure-and-prepare channels (i.e., entanglement-breaking channels) do not necessarily have a measure-and-prepare compatibilizing channel. Third, we extend the notion of the Jordan product of matrices to quantum channels and present sufficient conditions for channel compatibility. These Jordan products and their generalizations might be of independent interest. Last, we formulate the different notions of compatibility as semidefinite programs and numerically test when families of partially dephasing-depolarizing channels are compatible.

2.
Phys Rev Lett ; 123(19): 190601, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31765196

ABSTRACT

We examine when it is possible to locally extract energy from a bipartite quantum system in the presence of strong coupling and entanglement, a task which is expected to be restricted by entanglement in the low-energy eigenstates. We fully characterize this distinct notion of "passivity" by finding necessary and sufficient conditions for such extraction to be impossible, using techniques from semidefinite programing. This is the first time in which such techniques are used in the context of energy extraction, which opens a way of exploring further kinds of passivity in quantum thermodynamics. We also significantly strengthen a previous result of Frey et al., by showing a physically relevant quantitative bound on the threshold temperature at which this passivity appears. Furthermore, we show how this no-go result also holds for thermal states in the thermodynamic limit, provided that the spatial correlations decay sufficiently fast, and we give numerical examples.

3.
Phys Rev Lett ; 117(6): 060401, 2016 Aug 05.
Article in English | MEDLINE | ID: mdl-27541446

ABSTRACT

Consider a two-party correlation that can be generated by performing local measurements on a bipartite quantum system. A question of fundamental importance is to understand how many resources, which we quantify by the dimension of the underlying quantum system, are needed to reproduce this correlation. In this Letter, we identify an easy-to-compute lower bound on the smallest Hilbert space dimension needed to generate a given two-party quantum correlation. We show that our bound is tight on many well-known correlations and discuss how it can rule out correlations of having a finite-dimensional quantum representation. We show that our bound is multiplicative under product correlations and also that it can witness the nonconvexity of certain restricted-dimensional quantum correlations.

SELECTION OF CITATIONS
SEARCH DETAIL