Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 166: 41-52, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34090120

ABSTRACT

Polyamines (PA) have multifarious roles in plant-environment interaction and stress responses. In conjunction with GABA shunt, they regulate induction of tolerance under salinity stress in plants. Here, we tested the hypothesis that silicon improves salt tolerance through mediating vital metabolic pathways rather than acting as a mere mechanical barrier. Seedlings of two rice (Oryza sativa L.) cultivars MTU 1010 (salt-sensitive) & Nonabokra (salt-tolerant) growing in hydroponic culture were treated with NaCl (0, 25, 50 & 100 mM) combined with or without Si (2 mM). NaCl stress enhanced PA synthesizing enzymes activity and PA production in salt tolerant cultivar Nonabokra, whereas in the sensitive cultivar, MTU 1010 both declined. Enhanced activities of GABA synthesizing enzymes along with a decline in the activities of GABA degrading enzymes under NaCl exposure led to GABA accumulation in both the cultivars. The interactive effects of silicon and NaCl also induced the activities of the enzymes related to polyamine biosynthesis and inhibited polyamine degrading enzymes that enhanced PA contents in the cultivars. Supplemental Si decreased endogenous GABA levels by modulating GABA metabolising enzymes under NaCl stress. On the basis of all tested parameters cv. MTU 1010 was proven to be more responsive towards silicon application than cv. Nonabokra. Such study of silicon-induced polyamine accretion and reduced GABA accumulation may lower oxidative damage in rice cultivars under NaCl stress and thereby form a successful strategy to boost tolerance.


Subject(s)
Oryza , Salt Tolerance , Polyamines , Silicon/pharmacology , gamma-Aminobutyric Acid
2.
Environ Sci Pollut Res Int ; 27(36): 45209-45224, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32779070

ABSTRACT

A hydroponic experiment was conducted to establish the response of exogenous silicon [Si] in alleviating arsenate [As (V)] prompted alterations on antioxidant enzyme activities and thiol metabolism in wheat (Triticum aestivum L. cv PBW 343) seedlings. Objective of the work was to validate the hypothesis whether silicate may alleviate arsenate-provoked oxidative stress in wheat through diverse metabolic pathways with an endeavor to improve food safety and health. Arsenate treatment significantly enhanced oxidative stress and was associated with modifications in non-enzymatic and enzymatic antioxidants. The activities of arsenate reductase [AR] and the enzymes related to thiol metabolism revealed dose-dependent enhancements with increase in arsenate along with enhanced production of phytochelatins [PCs] in the cultivar. Simultaneous supplementations of silicate with arsenate in the nutrient formulation reduced arsenate uptake along with arsenate reductase activity and consequently lowered arsenite [As (III)] accumulation. The antioxidative defense was upregulated and phytochelatin production was lowered causing an appreciable revival from the arsenate-imposed consequences that eventually augmented growth.


Subject(s)
Arsenic , Seedlings , Antioxidants , Oxidative Stress , Silicon , Sulfhydryl Compounds , Triticum
3.
Environ Sci Pollut Res Int ; 26(13): 13630-13648, 2019 May.
Article in English | MEDLINE | ID: mdl-30919191

ABSTRACT

The objective of the present investigation was to consider the effectiveness of exogenous silicate supplementation in reviving the arsenate imposed alterations on pigment content, Hill activity, photosynthetic parameters, sugar metabolism, polyamine, and ion contents in wheat (Triticum aestivum L. cv. PBW-343) seedlings. Experiments were conducted under different levels of arsenate (0, 25 µM, 50 µM, and 100 µM) in combination with silicate (0, 5 mM) in a hydroponic environment with modified Hoagland's solution for 21 days to determine the ameliorative role of silicon (Si). Arsenate exposure led to a decline in chlorophyll content by 28% and Hill activity by 30% on an average along with photosynthetic parameters. Activity of starch phosphorylase increased causing a subsequent decrease in starch contents by 26%. Degradation of starch enhanced sugar contents by 61% in the test cultivar. Dose-dependant increments in the activities of carbohydrate metabolizing enzymes viz., sucrose synthase, sucrose phosphate synthase, and acid invertase were also noted. Putrescine content was significantly enhanced along with a consequent decline in spermidine and spermine contents. The macro- and micronutrient contents declined proportionally with arsenate imposition. Conversely, silicate amendments irrespective of all arsenate concentrations brought about considerable alterations in all parameters tested with respect to arsenate treatment alone. Marked improvement in pigment content and Hill activity also improved the gas exchange parameters. Soluble sugar contents decreased and starch contents were enhanced. Increase in polyamine contents improved the ionic balance in the test cultivar as well. This study highlights the potentiality of silicon in ameliorating the ecotoxicological risks associated with arsenic pollution and the probable ability of silicon to offer an approach in mitigating arsenate-induced stress leading to restoration of growth and metabolism in wheat seedlings.


Subject(s)
Arsenic/metabolism , Chlorophyll/metabolism , Glucosyltransferases/metabolism , Hydroponics/methods , Polyamines/metabolism , Seedlings/metabolism , Silicon/chemistry , Sugars/metabolism , Triticum/growth & development , beta-Fructofuranosidase/metabolism , Arsenic/chemistry , Carbohydrate Metabolism , Chlorophyll/chemistry , Glucosyltransferases/chemistry , Photosynthesis , Polyamines/chemistry , Seedlings/chemistry , Silicon/pharmacology , Sugars/chemistry , beta-Fructofuranosidase/chemistry
4.
Plant Physiol Biochem ; 136: 76-91, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30658287

ABSTRACT

The activities of TCA cycle enzymes viz., pyruvate dehydrogenase, citrate synthase, isocitrate dehydrogenase, succinate dehydrogenase and malate dehydrogenase as well as levels of different organic acids viz., pyruvic acid, citric acid, succinic acid and malic acid were studied in two rice cultivars viz. cv. Nonabokra and cv. MTU 1010 differing in salt tolerance grown under 25, 50 and 100 mM NaCl salinity levels. A contrasting response to salt stress on enzyme activities of TCA cycle and accumulation of organic acid was observed between two cultivars during twenty-one days period of study. Salinity caused enhanced organic acid production and increase in all five enzyme activities in cv. Nonabokra whereas in cv. MTU 1010 decrease in both organic acid production and enzymes activities were noted. Joint application of exogenous silicon along with NaCl, altered the organic acids levels and activities of enzymes in both cultivars of rice seedlings conferring tolerance against salt induced stress. Rice cv. MTU 1010 showed better response to exogenous silicon on parameters tested compared to cv. Nonabokra.


Subject(s)
Citric Acid Cycle/drug effects , Oryza/drug effects , Silicon/pharmacology , Chlorides/metabolism , Citrate (si)-Synthase/metabolism , Citric Acid/metabolism , Isocitrate Dehydrogenase/metabolism , Malate Dehydrogenase/metabolism , Malates/metabolism , Membrane Potential, Mitochondrial/drug effects , Microscopy, Confocal , Oryza/enzymology , Oryza/metabolism , Potassium/metabolism , Pyruvate Dehydrogenase Complex/metabolism , Pyruvic Acid/metabolism , Salt Stress , Sodium/metabolism , Succinate Dehydrogenase/metabolism , Succinic Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...