Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
J Extracell Vesicles ; 13(4): e12439, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38647111

ABSTRACT

Our previous findings demonstrated that astrocytic HIF-1α plays a major role in HIV-1 Tat-mediated amyloidosis which can lead to Alzheimer's-like pathology-a comorbidity of HIV-Associated Neurocognitive Disorders (HAND). These amyloids can be shuttled in extracellular vesicles, and we sought to assess whether HIV-1 Tat stimulated astrocyte-derived EVs (ADEVs) containing the toxic amyloids could result in neuronal injury in vitro and in vivo. We thus hypothesized that blocking HIF-1α could likely mitigate HIV-1 Tat-ADEV-mediated neuronal injury. Rat hippocampal neurons when exposed to HIV-1 Tat-ADEVs carrying the toxic amyloids exhibited amyloid accumulation and synaptodendritic injury, leading to functional loss as evidenced by alterations in miniature excitatory post synaptic currents. The silencing of astrocytic HIF-1α not only reduced the biogenesis of ADEVs, as well as amyloid cargos, but also ameliorated neuronal synaptodegeneration. Next, we determined the effect of HIV-1 Tat-ADEVs carrying amyloids in the hippocampus of naive mice brains. Naive mice receiving the HIV-1 Tat-ADEVs, exhibited behavioural changes, and Alzheimer's 's-like pathology accompanied by synaptodegeneration. This impairment(s) was not observed in mice injected with HIF-1α silenced ADEVs. This is the first report demonstrating the role of amyloid-carrying ADEVs in mediating synaptodegeneration leading to behavioural changes associated with HAND and highlights the protective role of HIF-1α.


Subject(s)
Astrocytes , Extracellular Vesicles , HIV-1 , Hippocampus , Hypoxia-Inducible Factor 1, alpha Subunit , Neurons , Extracellular Vesicles/metabolism , Animals , Astrocytes/metabolism , Mice , Rats , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , HIV-1/metabolism , Hippocampus/metabolism , Neurons/metabolism , tat Gene Products, Human Immunodeficiency Virus/metabolism , Humans , Neurocognitive Disorders/metabolism , Neurocognitive Disorders/etiology , HIV Infections/metabolism , HIV Infections/complications , Male , AIDS Dementia Complex/metabolism
2.
Am J Pathol ; 193(4): 380-391, 2023 04.
Article in English | MEDLINE | ID: mdl-37003622

ABSTRACT

With the advent of antiretroviral therapy, improved survival of people with HIV (PWH) is accompanied with increased prevalence of HIV-associated comorbidities. Chronic lung anomalies are recognized as one of the most devastating sequelae in PWH. The limited available data describing the lung complications in PWH with a history of opioid abuse warrants more research to better define the course of disease pathogenesis. The current study was conducted to investigate the progression of lung tissue remodeling in a morphine (Mor)-exposed rhesus macaque model of SIV infection. Pathologic features of lung remodeling, including histopathologic changes, oxidative stress, inflammation, and proliferation of fibroblasts, were investigated in archival lung tissues of SIVmac-251/macaque model with or without Mor dependence. Lungs of Mor-exposed, SIV-infected macaques exhibited significant fibrotic changes and collagen deposition in the alveolar and the bronchiolar region. There was increased oxidative stress, profibrotic transforming growth factor-ß, fibroblast proliferation and trans-differentiation, epithelial-mesenchymal transition, and matrix degradation in SIV-infected macaques, which was further exacerbated in the lungs of Mor-exposed macaques. Interestingly, there was decreased inflammation-associated remodeling in Mor-dependent SIV-infected macaques compared with SIV-infected macaques that did not receive Mor. Thus, the current findings suggest that SIV independently induces fibrotic changes in macaque lungs, which is further aggravated by Mor.


Subject(s)
HIV Infections , Pneumonia , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Simian Acquired Immunodeficiency Syndrome/complications , Simian Acquired Immunodeficiency Syndrome/pathology , Macaca mulatta , HIV Infections/pathology , Lung/pathology , Inflammation/pathology , Pneumonia/pathology , Fibrosis , Morphine Derivatives
3.
Redox Biol ; 62: 102689, 2023 06.
Article in English | MEDLINE | ID: mdl-37023693

ABSTRACT

This study was focused on exploring the role of the HIV-1 Tat protein in mediating microglial ferroptosis. Exposure of mouse primary microglial cells (mPMs) to HIV-1 Tat protein resulted in induction of ferroptosis, which was characterized by increased expression of Acyl-CoA synthetase long-chain family member 4 (ACSL4), in turn, leading to increased generation of oxidized phosphatidylethanolamine, elevated levels of lipid peroxidation, upregulated labile iron pool (LIP) and ferritin heavy chain-1 (FTH1), decreased glutathione peroxidase-4 and mitochondrial outer membrane rupture. Also, inhibition of ferroptosis by ferrostatin-1 (Fer-1) or deferoxamine (DFO) treatment suppressed ferroptosis-related changes in mPMs. Similarly, the knockdown of ACSL4 by gene silencing also inhibited ferroptosis induced by HIV-1 Tat. Furthermore, increased lipid peroxidation resulted in increased release of proinflammatory cytokines, such as TNFα, IL6, and IL1ß and microglial activation. Pretreatment of mPMs with Fer-1 or DFO further blocked HIV-1 Tat-mediated microglial activation in vitro and reduced the expression and release of proinflammatory cytokines. We identified miR-204 as an upstream modulator of ACSL4, which was downregulated in mPMs exposed to HIV-1 Tat. Transient transfection of mPMs with miR-204 mimics reduced the expression of ACSL4 while inhibiting HIV-1 Tat-mediated ferroptosis and the release of proinflammatory cytokines. These in vitro findings were further validated in HIV-1 transgenic rats as well as HIV + ve human brain samples. Overall, this study underscores a novel mechanism(s) underlying HIV-1 Tat-mediated ferroptosis and microglial activation involving miR-204-ACSL4 signaling.


Subject(s)
Ferroptosis , HIV-1 , MicroRNAs , Animals , Humans , Mice , Rats , Coenzyme A Ligases , Cytokines/metabolism , Gene Products, tat/metabolism , HIV-1/genetics , Microglia/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Rats, Transgenic
4.
Int J Mol Sci ; 24(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36901763

ABSTRACT

HIV-1 infection in the era of combined antiretroviral therapy has been associated with premature aging. Among the various features of HIV-1 associated neurocognitive disorders, astrocyte senescence has been surmised as a potential cause contributing to HIV-1-induced brain aging and neurocognitive impairments. Recently, lncRNAs have also been implicated to play essential roles in the onset of cellular senescence. Herein, using human primary astrocytes (HPAs), we investigated the role of lncRNA TUG1 in HIV-1 Tat-mediated onset of astrocyte senescence. We found that HPAs exposed to HIV-1 Tat resulted in significant upregulation of lncRNA TUG1 expression that was accompanied by elevated expression of p16 and p21, respectively. Additionally, HIV-1 Tat-exposed HPAs demonstrated increased expression of senescence-associated (SA) markers-SA-ß-galactosidase (SA-ß-gal) activity and SA-heterochromatin foci-cell-cycle arrest, and increased production of reactive oxygen species and proinflammatory cytokines. Intriguingly, gene silencing of lncRNA TUG1 in HPAs also reversed HIV-1 Tat-induced upregulation of p21, p16, SA-ß gal activity, cellular activation, and proinflammatory cytokines. Furthermore, increased expression of astrocytic p16 and p21, lncRNA TUG1, and proinflammatory cytokines were observed in the prefrontal cortices of HIV-1 transgenic rats, thereby suggesting the occurrence of senescence activation in vivo. Overall, our data indicate that HIV-1 Tat-induced astrocyte senescence involves the lncRNA TUG1 and could serve as a potential therapeutic target for dampening accelerated aging associated with HIV-1/HIV-1 proteins.


Subject(s)
HIV Infections , HIV-1 , RNA, Long Noncoding , Animals , Humans , Rats , Aging/metabolism , Astrocytes/metabolism , Cellular Senescence , Cytokines/metabolism , HIV Infections/metabolism , HIV-1/physiology , Rats, Transgenic , RNA, Long Noncoding/metabolism , tat Gene Products, Human Immunodeficiency Virus
5.
Adv Drug Alcohol Res ; 3: 11092, 2023.
Article in English | MEDLINE | ID: mdl-38389809

ABSTRACT

Drug abuse and related disorders are a global public health crisis affecting millions, but to date, limited treatment options are available. Abused drugs include but are not limited to opioids, cocaine, nicotine, methamphetamine, and alcohol. Drug abuse and human immunodeficiency virus-1/acquired immune deficiency syndrome (HIV-1/AIDS) are inextricably linked. Extensive research has been done to understand the effect of prolonged drug use on neuronal signaling networks and gut microbiota. Recently, there has been rising interest in exploring the interactions between the central nervous system and the gut microbiome. This review summarizes the existing research that points toward the potential role of the gut microbiome in the pathogenesis of HIV-1-linked drug abuse and subsequent neuroinflammation and neurodegenerative disorders. Preclinical data about gut dysbiosis as a consequence of drug abuse in the context of HIV-1 has been discussed in detail, along with its implications in various neurodegenerative disorders. Understanding this interplay will help elucidate the etiology and progression of drug abuse-induced neurodegenerative disorders. This will consequently be beneficial in developing possible interventions and therapeutic options for these drug abuse-related disorders.

6.
Pharmacol Biochem Behav ; 219: 173432, 2022 09.
Article in English | MEDLINE | ID: mdl-35905802

ABSTRACT

Accumulating evidence from several studies has shown association between substance use, dysregulation of the microbiome and psychiatric disorders such as depression, anxiety, and psychosis. Many of the abused substances such as cocaine and alcohol have been shown to alter immune signaling pathways and cause inflammation in both the periphery and the central nervous system (CNS). In addition, these substances of abuse also alter the composition and function of the gut microbiome which is known to play important roles such as the synthesis of neurotransmitters and metabolites, that affect the CNS homeostasis and consequent behavioral outcomes. The emerging interactions between substance use, microbiome and CNS neurochemical alterations could contribute to the development of psychiatric disorders. This review provides an overview of the associative effects of substance use such as alcohol, cocaine, methamphetamine, nicotine and opioids on the gut microbiome and psychiatric disorders involving anxiety, depression and psychosis. Understanding the relationship between substance use, microbiome and psychiatric disorders will provide insights for potential therapeutic targets, aimed at mitigating these adverse outcomes.


Subject(s)
Cocaine , Gastrointestinal Microbiome , Mental Disorders , Microbiota , Substance-Related Disorders , Cocaine/pharmacology , Ethanol/pharmacology , Humans , Substance-Related Disorders/psychology
7.
Front Mol Biosci ; 9: 840364, 2022.
Article in English | MEDLINE | ID: mdl-35433837

ABSTRACT

Recent findings have highlighted potential diagnostic and prognostic values of extracellular vesicles (EVs) that contain mitochondrial derived components for neurological disorders. Furthermore, functional influences of vesicles carrying mitochondrial components have been reported. In particular, this includes indications of crosstalk with mitophagy to influence progression of various CNS disorders. In this mini-review, we discuss the current state of knowledge about this intriguing class of vesicles in neurological disorders of the CNS, and outline the lacunae and thus scope of further development in this fascinating field of study.

8.
J Neuroimmune Pharmacol ; 17(1-2): 62-75, 2022 06.
Article in English | MEDLINE | ID: mdl-34628571

ABSTRACT

Cocaine abuse is known to cause inflammation, oxidative injury and alterations in the gut microbiota. Although emerging studies have demonstrated the role of gut microbiota in modulating neurological complications and behavior, the mechanism(s) underlying these processes remain unclear. In the present study, we investigated the protective effect of Lactobacillus rhamnosus probiotic on cocaine-induced oxidative stress, glial activation, and locomotion in mice. In this study, groups of male C56BL6 mice were administered gut-resident commensal bacteria L. rhamnosus probiotic (oral gavage) concurrently with cocaine (20 mg/kg, i.p.) or saline for 28 days and assessed for oxidative stress and cellular activation in both the gut and brain as well as alterations in locomotion behavior. Cocaine-induced gut dysregulation was associated with increased formation of 4-hydroxynonenal (4-HNE) adducts, increased expression of pERK-1/2, pNF-kB-p65 and antioxidant mediators (SOD1, GPx1). In cocaine administered mice, there was increased activation of both microglia and astrocytes in the striatum and cortex of the brain as shown by enhanced expression of CD11b and GFAP, respectively. Cocaine administration also resulted in increased locomotor activity in the open field test in these mice. Administration of L. rhamnosus attenuated cocaine-induced gut oxidative stress and inflammation as well as glial activation and locomotion. These results suggest the potential of microbial-based interventions to attenuate cocaine-mediated behavioral responses and neuroinflammation, in addition to systemic inflammation and oxidative damage.


Subject(s)
Cocaine , Lacticaseibacillus rhamnosus , Male , Animals , Mice , Cocaine/toxicity , CD11b Antigen , Locomotion , Oxidative Stress
10.
Article in English | MEDLINE | ID: mdl-36812097

ABSTRACT

Aim: Activation of microglial NLRP3 inflammasome is an essential contributor to neuroinflammation underlying HIV-associated neurological disorders (HAND). Under pathological conditions, microglia-derived-EVs (MDEVs) can affect neuronal functions by delivering neurotoxic mediators to recipient cells. However, the role of microglial NLRP3 in mediating neuronal synaptodendritic injury has remained unexplored to date. In the present study, we sought to assess the regulatory role of HIV-1 Tat induced microglial NLRP3 in neuronal synaptodendritic injury. We hypothesized that HIV-1 Tat mediated microglia EVs carrying significant levels of NLRP3 contribute to the synaptodendritic injury, thereby affecting the maturation of neurons. Methods: To understand the cross-talk between microglia and neuron, we isolated EVs from BV2 and human primary microglia (HPM) cells with or without NLRP3 depletion using siNLRP3 RNA. EVs were isolated by differential centrifugation, characterized by ZetaView nanoparticle tracking analysis, electron microscopy, and western blot analysis for exosome markers. Purified EVs were exposed to primary rat neurons isolated from E18 rats. Along with green fluorescent protein (GFP) plasmid transfection, immunocytochemistry was performed to visualize neuronal synaptodendritic injury. Western blotting was employed to measure siRNA transfection efficiency and the extent of neuronal synaptodegeneration. Images were captured in confocal microscopy, and subsequently, Sholl analysis was performed for analyzing dendritic spines using neuronal reconstruction software Neurolucida 360. Electrophysiology was performed on hippocampal neurons for functional assessment. Results: Our findings demonstrated that HIV-1 Tat induced expression of microglial NLRP3 and IL1ß, and further that these were packaged in microglial exosomes (MDEV) and were also taken up by the neurons. Exposure of rat primary neurons to microglial Tat-MDEVs resulted in downregulation of synaptic proteins- PSD95, synaptophysin, excitatory vGLUT1, as well as upregulation of inhibitory proteins- Gephyrin, GAD65, thereby implicating impaired neuronal transmissibility. Our findings also showed that Tat-MDEVs not only caused loss of dendritic spines but also affected numbers of spine sub-types- mushroom and stubby. Synaptodendritic injury further affected functional impairment as evidenced by the decrease in miniature excitatory postsynaptic currents (mEPSCs). To assess the regulatory role of NLRP3 in this process, neurons were also exposed to Tat-MDEVs from NLRP3 silenced microglia. Tat-MDEVs from NLRP3 silenced microglia exerted a protective role on neuronal synaptic proteins, spine density as well as mEPSCs. Conclusion: In summary, our study underscores the role of microglial NLRP3 as an important contributor to Tat-MDEV mediated synaptodendritic injury. While the role of NLRP3 in inflammation is well-described, its role in EV-mediated neuronal damage is an interesting finding, implicating it as a target for therapeutics in HAND.

11.
Viruses ; 15(1)2022 12 23.
Article in English | MEDLINE | ID: mdl-36680084

ABSTRACT

Chronic low-grade inflammation remains an essential feature of HIV-1 infection under combined antiretroviral therapy (cART) and contributes to the accelerated cognitive defects and aging in HIV-1 infected populations, indicating cART limitations in suppressing viremia. Interestingly, ~50% of the HIV-1 infected population on cART that develops cognitive defects is complicated by drug abuse, involving the activation of cells in the central nervous system (CNS) and neurotoxin release, altogether leading to neuroinflammation. Neuroinflammation is the hallmark feature of many neurodegenerative disorders, including HIV-1-associated neurocognitive disorders (HAND). Impaired autophagy has been identified as one of the underlying mechanisms of HAND in treated HIV-1-infected people that also abuse drugs. Several lines of evidence suggest that autophagy regulates CNS cells' responses and maintains cellular hemostasis. The impairment of autophagy is associated with low-grade chronic inflammation and immune senescence, a known characteristic of pathological aging. Therefore, autophagy impairment due to CNS cells, such as neurons, microglia, astrocytes, and pericytes exposure to HIV-1/HIV-1 proteins, cART, and drug abuse could have combined toxicity, resulting in increased neuroinflammation, which ultimately leads to accelerated aging, referred to as neuroinflammaging. In this review, we focus on the potential role of autophagy in the mechanism of neuroinflammaging in the context of HIV-1 and drug abuse.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Substance-Related Disorders , Humans , Neuroinflammatory Diseases , HIV Infections/drug therapy , Autophagy , Inflammation/complications , Substance-Related Disorders/complications
12.
Aging Dis ; 12(6): 1389-1408, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34527417

ABSTRACT

While opiates like morphine play a major role in the pharmacotherapy for the control of pain associated with various diseases, paradoxically, their long-term use is associated with cognitive impairments. Furthermore, morphine administration has been shown to result in neuronal synaptodendritic injury in rodent brains, leading to neurodegeneration. We recently reported the role of astrocytes as contributors of amyloidosis associated with HIV-associated neurological disorders. Herein we hypothesize that morphine could induce astrocytic amyloidosis, which, in turn, could be disseminated to various regions in the brain by astrocyte-derived EVs (ADEVs). In this study we demonstrate brain region-specific up-regulation of astrocytic amyloids in morphine dependendent rhesus macaques. In addition, herein we also demonstrate increased expression of ß-site cleaving enzyme (BACE1), APP, and Aß in human primary astrocytes (HPAs) exposed to morphine. Mechanisms involved in this process included the up-regulation of hypoxia-inducible factor (HIF-1α), its translocation and binding to the promoter of BACE1, leading to increased BACE1 activity and, generation of Aß 1-42. Gene silencing approaches confirmed the regulatory role of HIF-1α in BACE1 mediated amyloidosis leading to astrocyte activation and neuroinflammation. We next sought to assess whether morphine-stimulated ADEVs could carry amyloid cargoes. Results showed that morphine exposure induced the release of morphine-ADEVs, carrying amyloids. Interestingly, silencing HIF-1α in astrocytes not only reduced the numbers of ADEV released, but also the packaging of amyloid cargos in the ADEVs. These findings were further validated in brain derived EVs (BEVs) isolated from macaques, wherein it was shown that BEVs from morphine-dependent macaques, carried varieties of amyloid cargoes including the cytokine IL-1ß. This is the first report implicating the role of HIF-1α-BACE1 axis in morphine-mediated induction of astrocytic amyloidosis, leading, in turn, to neuroinflammation and release of the amyloid cargoes via ADEVs. These findings set the groundwork for the future development of therapeutic strategies for targeting cognitive deficits in chronic opiate users.

13.
Vaccines (Basel) ; 9(8)2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34452054

ABSTRACT

Despite the widespread success of combined antiretroviral therapy (cART) in suppressing viremia, the prevalence of human immunodeficiency virus (HIV)-associated neurological disorders (HAND) and associated comorbidities such as Alzheimer's disease (AD)-like symptomatology is higher among people living with HIV. The pathophysiology of observed deficits in HAND is well understood. However, it has been suggested that it is exacerbated by aging. Epidemiological studies have suggested comparable concentrations of the toxic amyloid protein, amyloid-ß42 (Aß42), in the cerebrospinal fluid (CSF) of HAND patients and in the brains of patients with dementia of the Alzheimer's type. Apart from abnormal amyloid-ß (Aß) metabolism in AD, a better understanding of the role of similar pathophysiologic processes in HAND could be of substantial value. The pathogenesis of HAND involves either the direct effects of the virus or the effect of viral proteins, such as Tat, Gp120, or Nef, as well as the effects of antiretrovirals on amyloid metabolism and tauopathy, leading, in turn, to synaptodendritic alterations and neuroinflammatory milieu in the brain. Additionally, there is a lack of knowledge regarding the causative or bystander role of Alzheimer's-like pathology in HAND, which is a barrier to the development of therapeutics for HAND. This review attempts to highlight the cause-effect relationship of Alzheimer's-like pathology with HAND, attempting to dissect the role of HIV-1, HIV viral proteins, and antiretrovirals in patient samples, animal models, and cell culture model systems. Biomarkers associated with Alzheimer's-like pathology can serve as a tool to assess the neuronal injury in the brain and the associated cognitive deficits. Understanding the factors contributing to the AD-like pathology associated with HAND could set the stage for the future development of therapeutics aimed at abrogating the disease process.

14.
Curr HIV/AIDS Rep ; 18(5): 459-474, 2021 10.
Article in English | MEDLINE | ID: mdl-34427869

ABSTRACT

PURPOSE OF REVIEW: Involvement of the central nervous system (CNS) in HIV-1 infection is commonly associated with neurological disorders and cognitive impairment, commonly referred to as HIV-associated neurocognitive disorders (HAND). Severe and progressive neurocognitive impairment is rarely observed in the post-cART era; however, asymptomatic and mild neurocognitive disorders still exist, despite viral suppression. Additionally, comorbid conditions can also contribute to the pathogenesis of HAND. RECENT FINDINGS: In this review, we summarize the characterization of HAND, factors contributing, and the functional impairments in both preclinical and clinical models. Specifically, we also discuss recent advances in the animal models of HAND and in in vitro cultures and the potential role of drugs of abuse in this model system of HAND. Potential peripheral biomarkers associated with HAND are also discussed. Overall, this review identifies some of the recent advances in the field of HAND in cell culture studies, animal models, clinical findings, and the limitations of each model system, which can play a key role in developing novel therapeutics in the field.


Subject(s)
HIV Infections , Nervous System Diseases , Neurocognitive Disorders , AIDS Dementia Complex , Animals , Disease Models, Animal , HIV Infections/complications , Humans , Models, Theoretical , Nervous System Diseases/etiology , Neurocognitive Disorders/etiology
15.
Cell Mol Life Sci ; 78(11): 4849-4865, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33821293

ABSTRACT

Substance use disorder (SUD) is a growing health problem that affects several millions of people worldwide, resulting in negative socioeconomic impacts and increased health care costs. Emerging evidence suggests that extracellular vesicles (EVs) play a crucial role in SUD pathogenesis. EVs, including exosomes and microvesicles, are membrane-encapsulated particles that are released into the extracellular space by most types of cells. EVs are important players in mediating cell-to-cell communication through transfer of cargo such as proteins, lipids and nucleic acids. The EV cargo can alter the status of recipient cells, thereby contributing to both physiological and pathological processes; some of these play critical roles in SUD. Although the functions of EVs under several pathological conditions have been extensively reviewed, EV functions and potential applications in SUD remain less studied. In this review, we provide an overview of the current knowledge of the role of EVs in SUD, including alcohol, cocaine, heroin, marijuana, nicotine and opiate abuse. The review will focus on the biogenesis and cargo composition of EVs as well as the potential use of EVs as biomarkers of SUD or therapeutic targets in SUD.


Subject(s)
Extracellular Vesicles/metabolism , Substance-Related Disorders/pathology , Animals , Biomarkers/metabolism , Cell Communication , Cytochrome P-450 CYP2E1/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Extracellular Vesicles/transplantation , Humans , MicroRNAs/metabolism , Substance-Related Disorders/metabolism , Substance-Related Disorders/therapy
16.
Neurosci Lett ; 754: 135863, 2021 05 29.
Article in English | MEDLINE | ID: mdl-33794296

ABSTRACT

Various research studies that have investigated the association between HIV infection and addiction underpin the role of various drugs of abuse in impairing immunological and non-immunological pathways of the host system, ultimately leading to augmentation of HIV infection and disease progression. These studies have included both in vitro and in vivo animal models wherein investigators have assessed the effects of various drugs on several disease parameters to decipher the impact of drugs on both HIV infection and progression of HIV-associated neurocognitive disorders (HAND). However, given the inherent limitations in the existing animal models of HAND, these investigations only recapitulated specific aspects of the disease but not the complex human syndrome. Despite the inability of HIV to infect rodents over the last 30 years, multiple strategies have been employed to develop several rodent models of HAND. While none of these models can accurately mimic the overall pathophysiology of HAND, they serve the purpose of modeling some unique aspects of HAND. This review provides an overview of various animal models used in the field and a careful evaluation of methodological strengths and limitations inherent in both the model systems and study designs to understand better how the various animal models complement one another.


Subject(s)
Brain/physiopathology , Disease Models, Animal , HIV Infections/complications , Neurocognitive Disorders/epidemiology , Substance-Related Disorders/epidemiology , Animals , Brain/virology , Comorbidity , HIV Infections/psychology , HIV-1/pathogenicity , Humans , Mice , Neurocognitive Disorders/etiology , Neurocognitive Disorders/physiopathology , Neurocognitive Disorders/psychology , Rats , Substance-Related Disorders/physiopathology , Substance-Related Disorders/psychology
17.
J Neuroimmune Pharmacol ; 15(4): 628-642, 2020 12.
Article in English | MEDLINE | ID: mdl-33029670

ABSTRACT

Despite the ability of combination antiretroviral therapy to dramatically suppress viremia, the brain continues to be a reservoir of HIV-1 low-level replication. Adding further complexity to this is the comorbidity of drug abuse with HIV-1 associated neurocognitive disorders and neuroHIV. Among several abused drugs, the use of opiates is highly prevalent in HIV-1 infected individuals, both as an abused drug as well as for pain management. Opioids and their receptors have attained notable attention owing to their ability to modulate immune functions, in turn, impacting disease progression. Various cell culture, animal and human studies have implicated the role of opioids and their receptors in modulating viral replication and virus-mediated pathology both positively and negatively. Further, the combinatorial effects of HIV-1/HIV-1 proteins and morphine have demonstrated activation of inflammatory signaling in the host system. Herein, we summarized the current knowledge on the role of opioids on peripheral immunopathogenesis, viral immunopathogenesis, epigenetic profiles of the host and viral genome, neuropathogenesis of SIV/SHIV-infected non-human primates, blood-brain-barrier, HIV-1 viral latency, and viral rebound. Overall, this review provides recent insights into the role of opioids in HIV-1 immunopathogenesis. Graphical abstract.


Subject(s)
Analgesics, Opioid/adverse effects , Analgesics, Opioid/metabolism , HIV-1/drug effects , HIV-1/metabolism , Immunity/drug effects , Virus Replication/drug effects , Animals , Brain/drug effects , Brain/immunology , Brain/metabolism , HIV Infections/epidemiology , HIV Infections/immunology , HIV Infections/metabolism , HIV-1/immunology , Humans , Immunity/physiology , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/metabolism , Virus Replication/physiology
18.
Cells ; 9(8)2020 08 08.
Article in English | MEDLINE | ID: mdl-32784383

ABSTRACT

Despite the effectiveness of combined antiretroviral therapy (cART) in suppressing virus replication, chronic inflammation remains one of the cardinal features intersecting HIV-1, cART, drug abuse, and likely contributes to the accelerated neurocognitive decline and aging in people living with HIV-1 (PLWH) that abuse drugs. It is also estimated that ~30-60% of PLWH on cART develop cognitive deficits associated with HIV-1-associated neurocognitive disorders (HAND), with symptomatology ranging from asymptomatic to mild, neurocognitive impairments. Adding further complexity to HAND is the comorbidity of drug abuse in PLWH involving activated immune responses and the release of neurotoxins, which, in turn, mediate neuroinflammation. Premature or accelerated aging is another feature of drug abusing PLWH on cART regimes. Emerging studies implicate the role of HIV-1/HIV-1 proteins, cART, and abused drugs in altering the inflammasome signaling in the central nervous system (CNS) cells. It is thus likely that exposure of these cells to HIV-1/HIV-1 proteins, cART, and/or abused drugs could have synergistic/additive effects on the activation of inflammasomes, in turn, leading to exacerbated neuroinflammation, ultimately resulting in premature aging referred to as "inflammaging" In this review, we summarize the current knowledge of inflammasome activation, neuroinflammation, and aging in central nervous system (CNS) cells such as microglia, astrocytes, and neurons in the context of HIV-1 and drug abuse.


Subject(s)
Aging/pathology , HIV Infections/pathology , Inflammasomes/metabolism , Inflammation/pathology , Neurocognitive Disorders/pathology , Substance-Related Disorders/pathology , Animals , Anti-HIV Agents/therapeutic use , Comorbidity , Cytokines/metabolism , Drug Interactions , HIV Infections/drug therapy , HIV-1 , Humans
19.
Metab Brain Dis ; 35(8): 1279-1286, 2020 12.
Article in English | MEDLINE | ID: mdl-32696190

ABSTRACT

Intracerebroventricular (ICV) injection of streptozotocin (STZ) is a well established procedure to induce neuroinflammation leading to dementia in experimental animals. However, the optimal dose of STZ has not been determined. In the present study, rats were ICV injected with 1.5, 3 and 6 mg of STZ per kg of body weight. After 21 days, neuroinflammatory markers i.e. TNF-α, IL-1ß, ROS and nitrite were quantified in the hippocampus. Memory function was assessed by the radial arm maze test after 9, 12, 15, 18, 21 days following STZ injection. STZ treatment significantly increased neuroinflammatory markers and decreased memory functions in a dose dependent manner showing optimum effects at the dose of 3 mg/kg.


Subject(s)
Inflammation Mediators/metabolism , Memory Disorders/chemically induced , Memory Disorders/metabolism , Streptozocin/administration & dosage , Streptozocin/toxicity , Animals , Dose-Response Relationship, Drug , Hippocampus/drug effects , Hippocampus/metabolism , Injections, Intraventricular , Male , Rats , Reactive Oxygen Species/metabolism
20.
Viruses ; 12(7)2020 06 28.
Article in English | MEDLINE | ID: mdl-32605316

ABSTRACT

Almost all types of cells release extracellular vesicles (EVs) into the extracellular space. EVs such as exosomes and microvesicles are membrane-bound vesicles ranging in size from 30 to 1000 nm in diameter. Under normal conditions, EVs mediate cell to cell as well as inter-organ communication via the shuttling of their cargoes which include RNA, DNA and proteins. Under pathological conditions, however, the number, size and content of EVs are found to be altered and have been shown to play crucial roles in disease progression. Emerging studies have demonstrated that EVs are involved in many aspects of viral infection-mediated neurodegenerative diseases. In the current review, we will describe the interactions between EV biogenesis and the release of virus particles while also reviewing the role of EVs in various viral infections, such as HIV-1, HTLV, Zika, CMV, EBV, Hepatitis B and C, JCV, and HSV-1. We will also discuss the potential uses of EVs and their cargoes as biomarkers and therapeutic vehicles for viral infections.


Subject(s)
Extracellular Vesicles/virology , Neurodegenerative Diseases/virology , Virus Diseases/virology , Virus Physiological Phenomena , Animals , Exosomes/virology , Humans , Viruses/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...