Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35807429

ABSTRACT

5-Hydroxymethylfurfural (5-HMF) has been described as one of the 12 key platform molecules derived from biomass by the US Department of Energy, and its hydrogenation reaction produces versatile liquid biofuels such as 2,5-dimethylfuran (2,5-DMF). Catalytic hydrogenation from 5-HMF to 2,5-DMF was thoroughly studied on the metal nickel catalysts supported on Al2O3-TiO2-ZrO2 (Ni/ATZ) mixed oxides using isopropanol and formic acid (FA) as hydrogen donors to find the best conditions of the reaction and hydrogen donor. The influence of metal content (wt%), Ni particle size (nm), Nickel Ni0, Ni0/NiO and NiO species, metal active sites and acid-based sites on the catalyst surface, and the effect of the hydrogen donor (isopropanol and formic acid) were systematically studied. The structural characteristics of the materials were studied using different physicochemical methods, including N2 physisorption, XRD, Raman, DRS UV-Vis, FT-IR, SEM, FT-IR Pyad, H2-TPD, CO2-TPD, H2-TPR, TEM and XPS. Second-generation 2,5-DMF biofuel and 5-HMF conversion by-products were analyzed and elucidated using 1H NMR. It was found that the Ni0NiO/ATZ3WI catalyst synthesized by the impregnation method (WI) generated a good synergistic effect between the species, showing the best catalytic hydrogenation of 5-HMF to 2,5-DMF using formic acid as a hydrogen donor for 24 h of reaction and temperature of 210 °C with 20 bar pressure of Argon (Ar).


Subject(s)
Hydrogen , Nickel , 2-Propanol , Biofuels , Furaldehyde/analogs & derivatives , Furans , Hydrogen/chemistry , Hydrogenation , Nickel/chemistry , Spectroscopy, Fourier Transform Infrared , Titanium
2.
Nanomaterials (Basel) ; 12(12)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35745314

ABSTRACT

In this study, simplex centroid mixture design was employed to determine the effect of urea on ZnO-CeO. The heterojunction materials were synthesized using a solid-state combustion method, and the physicochemical properties were evaluated using X-ray diffraction, nitrogen adsorption/desorption, and UV-Vis spectroscopy. Photocatalytic activity was determined by a triclosan degradation reaction under UV irradiation. According to the results, the crystal size of zinc oxide decreases in the presence of urea, whereas a reverse effect was observed for cerium oxide. A similar trend was observed for ternary samples, i.e., the higher the proportion of urea, the larger the crystallite cerium size. In brief, urea facilitated the co-existence of crystallites of CeO and ZnO. On the other hand, UV spectra indicate that urea shifts the absorption edge to a longer wavelength. Studies of the photocatalytic activity of TCS degradation show that the increase in the proportion of urea favorably influenced the percentage of mineralization.

3.
Nanomaterials (Basel) ; 12(12)2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35745357

ABSTRACT

γ-Valerolactone (GVL) has been considered an alternative as biofuel in the production of carbon-based chemicals; however, the use of noble metals and corrosive solvents has been a problem. In this work, Ni supported nanocatalysts were prepared to produce γ-Valerolactone from levulinic acid using methanol as solvent at a temperature of 170 °C utilizing 4 MPa of H2. Supports were modified at pH 3 using acetic acid (CH3COOH) and pH 9 using ammonium hydroxide (NH4OH) with different tungsten (W) loadings (1%, 3%, and 5%) by the Sol-gel method. Ni was deposited by the suspension impregnation method. The catalysts were characterized by various techniques including XRD, N2 physisorption, UV-Vis, SEM, TEM, XPS, H2-TPR, and Pyridine FTIR. Based on the study of acidity and activity relation, Ni dispersion due to the Lewis acid sites contributed by W at pH 9, producing nanoparticles smaller than 10 nm of Ni, and could be responsible for the high esterification activity of levulinic acid (LA) to Methyl levulinate being more selective to catalytic hydrogenation. Products and by-products were analyzed by 1H NMR. Optimum catalytic activity was obtained with 5% W at pH 9, with 80% yield after 24 h of reaction. The higher catalytic activity was attributed to the particle size and the amount of Lewis acid sites generated by modifying the pH of synthesis and the amount of W in the support due to the spillover effect.

4.
Materials (Basel) ; 14(19)2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34639867

ABSTRACT

NiWAu trimetallic nanoparticles (NPs) on the surface of support Al2O3-CeO2-TiO2 were synthesized by a three-step synthetic method in which Au NPs were incorporated into presynthesized NiW/Al2O3-CeO2-TiO2. The recharge method, also known as the redox method, was used to add 2.5 wt% gold. The Al2O3-CeO2-TiO2 support was made by a sol-gel method with two different compositions, and then two metals were simultaneously loaded (5 wt% nickel and 2.5 wt% tungsten) by two different methods, incipient wet impregnation and ultrasound impregnation method. In this paper, we study the effect of Au addition using the recharge method on NiW nanomaterials supported on mixed oxides on the physicochemical properties of synthesized nanomaterials. The prepared nanomaterials were characterized by scanning electron microscopy, BET specific surface area, X-ray diffraction, diffuse reflectance spectroscopy in the UV-visible range and temperature-programmed desorption of hydrogen. The experimental results showed that after loading of gold, the dispersion was higher (46% and 50%) with the trimetallic nanomaterials synthesized by incipient wet impregnation plus recharge method than with impregnation plus ultrasound recharge method, indicating a greater number of active trimetallic (NiWAu) sites in these materials. Small-sized Au from NiWAu/ACTU1 trimetallic nanostructures was enlarged for NiWAu/ACT1. The strong metal NPs-support interaction shown for the formation of NiAl2O4, Ni-W-O and Ni-Au-O species simultaneously present in the surface of trimetallic nanomaterial probably plays an important role in the degree of dispersion of the gold active phase.

5.
Nanomaterials (Basel) ; 11(10)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34685011

ABSTRACT

Three bimetallic catalysts of the type M-Cu with M = Ag, Au and Ni supports were successfully prepared by a two-step synthesized method using Cu/Al2O3-CeO2 as the base monometallic catalyst. The nanocatalysts were characterized using X-ray diffraction (XRD), temperature-programmed reduction of H2 (H2-TPR), N2 adsorption-desorption, scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and ultraviolet-visible spectroscopy with diffuse reflectance (DR-UV-Vis) techniques. This synthesized methodology allowed a close interaction between two metals on the support surface; therefore, it could have synthesized an efficient transition-noble mixture bimetallic nanostructure. Alloy formation through bimetallic nanoparticles (BNPs) of AgCuAlCe and AuCuAlCe was demonstrated by DR-UV-Vis, EDS, TEM and H2-TPR. Furthermore, in the case of AgCuAlCe and AuCuAlCe, improvements were observed in their reducibility, in contrast to NiCuAlCe. The addition of a noble metal over the monometallic copper-based catalyst drastically improved the phenol mineralization. The higher activity and selectivity to CO2 of the bimetallic gold-copper- and silver-copper-supported catalysts can be attributed to the alloy compound formation and the synergetic effect of the M-Cu interaction. Petroleum Refinery Wastewater (PRW) had a complex composition that affected the applied single CWAO treatment, rendering it inefficient.

6.
Water Sci Technol ; 80(5): 911-919, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31746798

ABSTRACT

In this work, we describe the morphological, electronic and catalytic properties of support TiO2-CeO2-ZrO2, prepared by sol-gel method, which was impregnated with copper at 5 and 10% by weight, in order to obtain efficient catalysts in the catalytic wet air oxidation (CWAO) of 2-cp. The catalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM-EDS), UV-Vis diffuse reflectance spectroscopy (DRS) and nitrogen physisorption by the Brunauer-Emmett-Teller (BET) method. The activity of the materials used in this study revealed that without the presence of Cu, the SCO2 is low and with a content of 10% this metal shows the best catalytic behaviour; conversely, a reaction mechanism is proposed that describes the complete oxidation of 2-cp in this case.


Subject(s)
Chlorophenols , Copper , Catalysis , Oxidation-Reduction
7.
RSC Adv ; 9(20): 11123-11134, 2019 Apr 09.
Article in English | MEDLINE | ID: mdl-35520247

ABSTRACT

Catalysts Ag/ZrO2-CeO2 and Au/ZrO2-CeO2 were synthesized by a deposition-precipitation method and Ag-Au/ZrO2-CeO2 was prepared using a recharge method for the second metal (Au). The materials were characterized by physisorption of N2, XRD, ICP, UV-vis RDS, H2-TPR, XPS and TEM. The results obtained show that the specific areas for monometallic materials were 29-37 m2 g-1 and 27-74 m2 g-1 for bimetallics. The tetragonal crystal phase of ZrO2 stabilizes when CeO2 quantity increases. Using XPS an increment in Ce3+ species abundance was determined for bimetallic catalysts in contrast to the monometallic ones; according to the Ag 3d region, this metal oxidation was observed when augmenting the content of CeO2 in the materials, and with Au the opposite effect was produced. It was determined by TEM, that the average size of the metallic particles was smaller at bimetallic catalysts due the preparation method. Catalytic activity was evaluated by CWAO of phenol, the Ag-Au/ZrO2-CeO2 catalyst with 20% wt of cerium reached a degradation of 100% within an hour, being the most active catalyst. Maleic, formic and oxalic acid were identified as reaction intermediates; and at the end of the reaction acetic acid was identified as the main by-product, because it is the most refractory and the conditions for oxidation must be more severe.

8.
RSC Adv ; 9(15): 8463-8479, 2019 Mar 12.
Article in English | MEDLINE | ID: mdl-35547604

ABSTRACT

Cu, Ni, CuO and NiO catalysts, prepared by wet impregnation with urea and supported on γ-Al2O3, CeO2, and Al2O3-CeO2, were evaluated for Catalytic Wet Air Oxidation (CWAO) of phenol in a batch reactor under a milder condition (120 °C and 10 bar O2). The synthesized samples, at their calcined and/or their reduced form, were characterized by XRD, H2-TPR, N2 adsorption-desorption, SEM-EDS and DR-UV-Vis to explain the differences observed in their catalytic activity towards the studied reaction. The influence of the support on the efficiency of CWAO of phenol at 120 °C and 10 bar of pure oxygen has been examined and compared over nickel and copper species. The SEM-EDS results reveal that the spherical crystalline Cu and Ni were successfully deposited on the surface of γ-Al2O3, CeO2, Al2O3-CeO2 within 16-90 nm and that they were highly homogeneously dispersed. It was found that catalysts prepared from impregnation solutions of Cu(NO3)2·3H2O and Ni(NO3)2·6H2O with urea addition had different textural characteristics and degrees of dispersion of Cu and Ni species. The urea addition in the traditional wet impregnation method was essential to improve the reducibility and degree of dispersion in Ni, and to a lesser extent, in Cu. According to the characterization analysis of H2-TPR and UV-VIS RD a structure-activity relationship can be determined. The chemical oxygen demand (COD) and GC analyses confirmed the effect of calcined and reduced species for Cu and Ni applied to the catalytic oxidation of phenol, showing their significant impact in the final performance of the catalyst.

SELECTION OF CITATIONS
SEARCH DETAIL
...