Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 5(21): 11419-26, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24117025

ABSTRACT

Composite material consisting of single walled carbon nanotubes (SWCNTs) and metal oxide nanoparticles has been prepared and their hydrogen storage performance is evaluated. Metal oxides such as tin oxide (SnO2), tungsten trioxide (WO3), and titanium dioxide (TiO2) are chosen as the composite constituents. The composites have been prepared by means of ultrasonication. Then, the composite samples are deposited on alumina substrates and at 100 °C in a Sieverts-like hydrogenation setup. Characterization techniques such as transmission electron microscopy (TEM), Raman spectroscopy, scanning electron microscopy (SEM), powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, energy dispersive spectroscopy (EDS), CHN elemental analysis, and thermogravimetric (TG) measurements are used to analyze the samples at various stages of experiments. Hydrogen storage capacity of the composites namely, SWCNT-SnO2, SWCNT-WO3, and SWCNT-TiO2 are found to be 1.1, 0.9, and 1.3 wt %, respectively. Hydrogenated composite samples are stable at room temperature and desorption of hydrogen is found to be 100% reversible. Desorption temperature ranges and binding energy ranges of hydrogen have been measured from the desorption studies. The hydrogenation, dehydrogenation temperature, and binding energy of hydrogen fall in the recommended range of a suitable hydrogen storage medium applicable for fuel cell applications. Reproducibility and deterioration level of the composite samples have also been examined.

SELECTION OF CITATIONS
SEARCH DETAIL
...