Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 20(12): 4494-4501, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31721566

ABSTRACT

Substrates with combinations of topographical and biochemical cues are highly useful for a number of fundamental biological investigations. Tethered molecular concentration gradients in particular are highly desired for a number of biomedical applications including cell migration. Herein, we report a versatile method for the fabrication of aligned nanofiber substrates with a tunable concentration gradient along the fiber direction. 4-Dibenzocyclooctynol (DIBO) was used as an initiator for the ring-opening copolymerization of ε-caprolactone (εCL) and allyl-functionalized ε-caprolactone (AεPCL), which yielded a well-defined polymer with orthogonal functional handles. These materials were fabricated into aligned nanofiber substrates via touch-spinning. Fibers were modified post-spinning with a concentration gradient of fluorescently labeled dye via a light activated thiol-ene reaction through a photomask. As a demonstration, the cell adhesive peptide RGD was chemically tethered to the fiber surface at a second functionalization site via strain-promoted azide-alkyne cycloaddition (SPAAC). This novel approach affords fabrication of dual functional nanofiber substrates.


Subject(s)
Nanofibers/chemistry , Oligopeptides/chemistry , Polyesters/chemistry , Polyesters/chemical synthesis , Cycloaddition Reaction
2.
Biomacromolecules ; 20(3): 1443-1454, 2019 03 11.
Article in English | MEDLINE | ID: mdl-30726667

ABSTRACT

Stem cell differentiation toward a specific lineage is controlled by its microenvironment. Polymer scaffolds have long been investigated to provide microenvironment cues; however, synthetic polymers lack the specific signaling motifs necessary to direct cellular responses on their own. In this study, we fabricated random and aligned poly(ε-caprolactone) nanofiber substrates, surface-functionalized with RGD viastrain-promoted azide-alkyne cycloaddition, that were used to investigate the role of a covalently tethered bioactive peptide (RGD) and nanofiber orientation on neural differentiation of mouse embryonic stem cells. Gene and protein expression showed neural differentiation progression over 14 days, with similar expression on RGD random and aligned nanofibers for neurons and glia over time. The high levels of glial fibrillary acidic protein expression at early time points were indicative of neural progenitors, and occurred earlier than on controls or in previous reports. These results highlight the influence of RGD binding versus topography in differentiation.


Subject(s)
Cell Differentiation , Glial Fibrillary Acidic Protein/metabolism , Mouse Embryonic Stem Cells/cytology , Nanofibers/chemistry , Neurons/cytology , Oligopeptides/chemistry , Animals , Mice , Mouse Embryonic Stem Cells/metabolism
3.
Acta Biomater ; 75: 129-139, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29879551

ABSTRACT

Substrates for embryonic stem cell culture are typified by poorly defined xenogenic, whole proteins or cellular components that are difficult and expensive to generate, characterize, and recapitulate. Herein, the generation of well-defined scaffolds of Gly-Tyr-Ile-Gly-Ser-Arg (GYIGSR) peptide-functionalized poly(ε-caprolactone) (PCL) aligned nanofibers are used to accelerate the neural lineage commitment and differentiation of D3 mouse embryonic stem cells (mESCs). Gene expression trends and immunocytochemistry analysis were similar to laminin-coated glass, and indicated an earlier differentiation progression than D3 mESCs on laminin. Further, GYIGSR-functionalized nanofiber substrates yielded an increased gene expression of Sox1, a neural progenitor cell marker, and Tubb3, Cdh2, Syp, neuronal cell markers, at early time points. In addition, guidance of neurites was found to parallel the fiber direction. We demonstrate the fabrication of a well-defined, xeno-free functional nanofiber scaffold and demonstrates its use as a surrogate for xenogenic and complex matrixes currently used for the neural differentiation of stem cells ex vivo. STATEMENT OF SIGNIFICANCE: In this paper, we report the use of GYIGSR-functionalized poly(ε-caprolactone) aligned nanofibers as a tool to accelerate the neural lineage commitment and differentiation of D3 mouse embryonic stem cells. The results indicate that functional nanofiber substrates promote faster differentiation than laminin coated substrates. The data suggest that aligned nanofibers and post-electrospinning surface modification with bioactive species can be combined to produce translationally relevant xeno-free substrates for stem cell therapy. Future development efforts are focused on additional bioactive species that are able to function as surrogates for other xenogenic factors found in differentiation media.


Subject(s)
Cell Differentiation , Mouse Embryonic Stem Cells/metabolism , Nanofibers/chemistry , Neurons/metabolism , Peptides/chemistry , Tissue Scaffolds/chemistry , Animals , Antigens, Differentiation/biosynthesis , Cell Line , Gene Expression Regulation , Humans , Mice , Mouse Embryonic Stem Cells/cytology , Neurons/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...