Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
PLoS One ; 17(12): e0277401, 2022.
Article in English | MEDLINE | ID: mdl-36477474

ABSTRACT

PURPOSE: Differentiating between acute viral and bacterial infection is challenging due to the similarity in symptom presentation. Blood tests can assist in the diagnosis, but they reflect the immediate status and fail to consider the dynamics of an inflammatory response with time since symptom onset. We applied estimated C-reactive protein (CRP) velocity (eCRPv), as derived from the admission CRP level divided by time from symptom onset, in order to better distinguish between viral and bacterial infections. METHODS: This cross-sectional study included patients admitted to the emergency department with a confirmed viral (n = 83) or bacterial (n = 181) infection. eCRPv was defined as the ratio between the absolute CRP level upon admission to time from symptom onset (in hours). Absolute CRP and eCRPv values were compared between the 3 groups. RESULTS: Bacterial patients presented with higher CRP levels (133 mg/L) upon admission compared to viral patients (23.31 mg/L) (P < 0.001). Their median value of eCRPv velocity was 4 times higher compared to the viral patients (1.1 mg/L/h compared 0.25 mg/L/h, P < 0.001). Moreover, in intermediate values of CRP (100-150 mg/L) upon admission, in which the differential diagnosis is controversial, high eCRPv is indicative of bacterial infection, eCRPv >4 mg/L/h represents only bacterial patients. CONCLUSIONS: During an acute febrile illness, the eCRPv value can be used for rapid differentiation between bacterial and viral infection, especially in patients with high CRP values. This capability can potentially expedite the provision of appropriate therapeutic management. Further research and validation may open new applications of the kinetics of inflammation for rapid diagnosis of an infectious vs. a viral source of fever.


Subject(s)
Bacterial Infections , Virus Diseases , Humans , C-Reactive Protein , Cross-Sectional Studies , Physics , Virus Diseases/diagnosis , Bacterial Infections/diagnosis
2.
JAMA ; 327(4): 341-349, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35006256

ABSTRACT

Importance: Administration of a BNT162b2 booster dose (Pfizer-BioNTech) to fully vaccinated individuals aged 60 years and older was significantly associated with lower risk of SARS-CoV-2 infection and severe illness. Data are lacking on the effectiveness of booster doses for younger individuals and health care workers. Objective: To estimate the association of a BNT162b2 booster dose with SARS-CoV-2 infections among health care workers who were previously vaccinated with a 2-dose series of BNT162b2. Design, Setting, and Participants: This was a prospective cohort study conducted at a tertiary medical center in Tel Aviv, Israel. The study cohort included 1928 immunocompetent health care workers who were previously vaccinated with a 2-dose series of BNT162b2, and had enrolled between August 8 and 19, 2021, with final follow-up reported through September 20, 2021. Screening for SARS-CoV-2 infection was performed every 14 days. Anti-spike protein receptor binding domain IgG titers were determined at baseline and 1 month after enrollment. Cox regression with time-dependent analysis was used to estimate hazard ratios of SARS-CoV-2 infection between booster-immunized status and 2-dose vaccinated (booster-nonimmunized) status. Exposures: Vaccination with a booster dose of BNT162b2 vaccine. Main Outcomes and Measures: The primary outcome was SARS-CoV-2 infection, as confirmed by reverse transcriptase-polymerase chain reaction. Results: Among 1928 participants, the median age was 44 years (IQR, 36-52 years) and 1381 were women (71.6%). Participants completed the 2-dose vaccination series a median of 210 days (IQR, 205-213 days) before study enrollment. A total of 1650 participants (85.6%) received the booster dose. During a median follow-up of 39 days (IQR, 35-41 days), SARS-CoV-2 infection occurred in 44 participants (incidence rate, 60.2 per 100 000 person-days); 31 (70.5%) were symptomatic. Five SARS-CoV-2 infections occurred in booster-immunized participants and 39 in booster-nonimmunized participants (incidence rate, 12.8 vs 116 per 100 000 person-days, respectively). In a time-dependent Cox regression analysis, the adjusted hazard ratio of SARS-CoV-2 infection for booster-immunized vs booster-nonimmunized participants was 0.07 (95% CI, 0.02-0.20). Conclusions and Relevance: Among health care workers at a single center in Israel who were previously vaccinated with a 2-dose series of BNT162b2, administration of a booster dose compared with not receiving one was associated with a significantly lower rate of SARS-CoV-2 infection over a median of 39 days of follow-up. Ongoing surveillance is required to assess durability of the findings.


Subject(s)
Antibodies, Viral/blood , BNT162 Vaccine/administration & dosage , COVID-19 Vaccines/immunology , COVID-19/epidemiology , Health Personnel/statistics & numerical data , Vaccine Efficacy , Adult , Aged , BNT162 Vaccine/immunology , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Nucleic Acid Testing , Female , Humans , Immunization, Secondary , Immunoglobulin G/blood , Incidence , Israel/epidemiology , Male , Middle Aged , Proportional Hazards Models , Prospective Studies , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
3.
Ann Rheum Dis ; 80(10): 1330-1338, 2021 10.
Article in English | MEDLINE | ID: mdl-34127481

ABSTRACT

INTRODUCTION: Vaccination represents a cornerstone in mastering the COVID-19 pandemic. Data on immunogenicity and safety of messenger RNA (mRNA) vaccines in patients with autoimmune inflammatory rheumatic diseases (AIIRD) are limited. METHODS: A multicentre observational study evaluated the immunogenicity and safety of the two-dose regimen BNT162b2 mRNA vaccine in adult patients with AIIRD (n=686) compared with the general population (n=121). Serum IgG antibody levels against SARS-CoV-2 spike S1/S2 proteins were measured 2-6 weeks after the second vaccine dose. Seropositivity was defined as IgG ≥15 binding antibody units (BAU)/mL. Vaccination efficacy, safety, and disease activity were assessed within 6 weeks after the second vaccine dose. RESULTS: Following vaccination, the seropositivity rate and S1/S2 IgG levels were significantly lower among patients with AIIRD versus controls (86% (n=590) vs 100%, p<0.0001 and 132.9±91.7 vs 218.6±82.06 BAU/mL, p<0.0001, respectively). Risk factors for reduced immunogenicity included older age and treatment with glucocorticoids, rituximab, mycophenolate mofetil (MMF), and abatacept. Rituximab was the main cause of a seronegative response (39% seropositivity). There were no postvaccination symptomatic cases of COVID-19 among patients with AIIRD and one mild case in the control group. Major adverse events in patients with AIIRD included death (n=2) several weeks after the second vaccine dose, non-disseminated herpes zoster (n=6), uveitis (n=2), and pericarditis (n=1). Postvaccination disease activity remained stable in the majority of patients. CONCLUSION: mRNA BNTb262 vaccine was immunogenic in the majority of patients with AIIRD, with an acceptable safety profile. Treatment with glucocorticoids, rituximab, MMF, and abatacept was associated with a significantly reduced BNT162b2-induced immunogenicity.


Subject(s)
Autoimmune Diseases/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunocompromised Host/immunology , Immunogenicity, Vaccine/immunology , Rheumatic Diseases/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibodies, Viral/immunology , Autoimmune Diseases/drug therapy , BNT162 Vaccine , COVID-19 Vaccines/adverse effects , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunosuppressive Agents/therapeutic use , Male , Middle Aged , Rheumatic Diseases/drug therapy , SARS-CoV-2 , Young Adult
4.
Eur J Plast Surg ; 35(7): 533-543, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22719176

ABSTRACT

The principle of stretching wound margins for primary wound closure is commonly practiced and used for various skin defects, leading at times to excessive tension and complications during wound closure. Different surgical techniques, skin stretching devices and tissue expanders have been utilized to address this issue. Previously designed skin stretching devices resulted in considerable morbidity. They were invasive by nature and associated with relatively high localized tissue pressure, frequently leading to necrosis, damage and tearing of skin at the wound margins. To assess the clinical effectiveness and performance and, to determine the safety of TopClosure® for gradual, controlled, temporary, noninvasive and invasive applications for skin stretching and secure wound closing, the TopClosure® device was applied to 20 patients for preoperative skin lesion removal and to secure closure of a variety of wound sizes. TopClosure® was reinforced with adhesives, staples and/or surgical sutures, depending on the circumstances of the wound and the surgeon's judgment. TopClosure® was used prior to, during and/or after surgery to reduce tension across wound edges. No significant complications or adverse events were associated with its use. TopClosure® was effectively used for preoperative skin expansion in preparation for dermal resection (e.g., congenital nevi). It aided closure of large wounds involving significant loss of skin and soft tissue by mobilizing skin and subcutaneous tissue, thus avoiding the need for skin grafts or flaps. Following surgery, it was used to secure closure of wounds under tension, thus improving wound aesthetics. A sample case study will be presented. We designed TopClosure®, an innovative device, to modify the currently practiced concept of wound closure by applying minimal stress to the skin, away from damaged wound edges, with flexible force vectors and versatile methods of attachment to the skin, in a noninvasive or invasive manner.

SELECTION OF CITATIONS
SEARCH DETAIL
...