Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cardiovasc Dev Dis ; 11(1)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38248892

ABSTRACT

Cardiovascular CT is being widely used in the diagnosis of cardiovascular disease due to the rapid technological advancements in CT scanning techniques. These advancements include the development of multi-slice CT, from early generation to the latest models, which has the capability of acquiring images with high spatial and temporal resolution. The recent emergence of photon-counting CT has further enhanced CT performance in clinical applications, providing improved spatial and contrast resolution. CT-derived fractional flow reserve is superior to standard CT-based anatomical assessment for the detection of lesion-specific myocardial ischemia. CT-derived 3D-printed patient-specific models are also superior to standard CT, offering advantages in terms of educational value, surgical planning, and the simulation of cardiovascular disease treatment, as well as enhancing doctor-patient communication. Three-dimensional visualization tools including virtual reality, augmented reality, and mixed reality are further advancing the clinical value of cardiovascular CT in cardiovascular disease. With the widespread use of artificial intelligence, machine learning, and deep learning in cardiovascular disease, the diagnostic performance of cardiovascular CT has significantly improved, with promising results being presented in terms of both disease diagnosis and prediction. This review article provides an overview of the applications of cardiovascular CT, covering its performance from the perspective of its diagnostic value based on traditional lumen assessment to the identification of vulnerable lesions for the prediction of disease outcomes with the use of these advanced technologies. The limitations and future prospects of these technologies are also discussed.

2.
J Clin Med ; 12(24)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38137799

ABSTRACT

Osteoporotic vertebral fractures (OVFs) are often not reported by radiologists on routine chest radiographs. This study aims to investigate the clinical value of a newly developed artificial intelligence (AI) tool, Ofeye 1.0, for automated detection of OVFs on lateral chest radiographs in post-menopausal women (>60 years) who were referred to undergo chest x-rays for other reasons. A total of 510 de-identified lateral chest radiographs from three clinical sites were retrieved and analysed using the Ofeye 1.0 tool. These images were then reviewed by a consultant radiologist with findings serving as the reference standard for determining the diagnostic performance of the AI tool for the detection of OVFs. Of all the original radiologist reports, missed OVFs were found in 28.8% of images but were detected using the AI tool. The AI tool demonstrated high specificity of 92.8% (95% CI: 89.6, 95.2%), moderate accuracy of 80.3% (95% CI: 76.3, 80.4%), positive predictive value (PPV) of 73.7% (95% CI: 65.2, 80.8%), and negative predictive value (NPV) of 81.5% (95% CI: 79, 83.8%), but low sensitivity of 49% (95% CI: 40.7, 57.3%). The AI tool showed improved sensitivity compared with the original radiologist reports, which was 20.8% (95% CI: 14.5, 28.4). The new AI tool can be used as a complementary tool in routine diagnostic reports for the reduction in missed OVFs in elderly women.

3.
Biomolecules ; 13(8)2023 07 28.
Article in English | MEDLINE | ID: mdl-37627245

ABSTRACT

Three-dimensional (3D) printing plays an important role in cardiovascular disease through the use of personalised models that replicate the normal anatomy and its pathology with high accuracy and reliability. While 3D printed heart and vascular models have been shown to improve medical education, preoperative planning and simulation of cardiac procedures, as well as to enhance communication with patients, 3D bioprinting represents a potential advancement of 3D printing technology by allowing the printing of cellular or biological components, functional tissues and organs that can be used in a variety of applications in cardiovascular disease. Recent advances in bioprinting technology have shown the ability to support vascularisation of large-scale constructs with enhanced biocompatibility and structural stability, thus creating opportunities to replace damaged tissues or organs. In this review, we provide an overview of the use of 3D bioprinting in cardiovascular disease with a focus on technologies and applications in cardiac tissues, vascular constructs and grafts, heart valves and myocardium. Limitations and future research directions are highlighted.


Subject(s)
Bioprinting , Cardiovascular Diseases , Humans , Cardiovascular Diseases/therapy , Reproducibility of Results , Heart , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...