Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Brain Commun ; 6(2): fcae056, 2024.
Article in English | MEDLINE | ID: mdl-38444904

ABSTRACT

This study aimed to determine the diagnostic yield of singleton exome sequencing and subsequent research-based trio exome analysis in children with a spectrum of brain malformations seen commonly in clinical practice. We recruited children ≤ 18 years old with a brain malformation diagnosed by magnetic resonance imaging and consistent with an established list of known genetic causes. Patients were ascertained nationally from eight tertiary paediatric centres as part of the Australian Genomics Brain Malformation Flagship. Chromosome microarray was required for all children, and those with pathogenic copy number changes were excluded. Cytomegalovirus polymerase chain reaction on neonatal blood spots was performed on all children with polymicrogyria with positive patients excluded. Singleton exome sequencing was performed through a diagnostic laboratory and analysed using a clinical exome sequencing pipeline. Undiagnosed patients were followed up in a research setting, including reanalysis of the singleton exome data and subsequent trio exome sequencing. A total of 102 children were recruited. Ten malformation subtypes were identified with the commonest being polymicrogyria (36%), pontocerebellar hypoplasia (14%), periventricular nodular heterotopia (11%), tubulinopathy (10%), lissencephaly (10%) and cortical dysplasia (9%). The overall diagnostic yield for the clinical singleton exome sequencing was 36%, which increased to 43% after research follow-up. The main source of increased diagnostic yield was the reanalysis of the singleton exome data to include newly discovered gene-disease associations. One additional diagnosis was made by trio exome sequencing. The highest phenotype-based diagnostic yields were for cobblestone malformation, tubulinopathy and lissencephaly and the lowest for cortical dysplasia and polymicrogyria. Pathogenic variants were identified in 32 genes, with variants in 6/32 genes occurring in more than one patient. The most frequent genetic diagnosis was pathogenic variants in TUBA1A. This study shows that over 40% of patients with common brain malformations have a genetic aetiology identified by exome sequencing. Periodic reanalysis of exome data to include newly identified genes was of greater value in increasing diagnostic yield than the expansion to trio exome. This study highlights the genetic and phenotypic heterogeneity of brain malformations, the importance of a multidisciplinary approach to diagnosis and the large number of patients that remain without a genetic diagnosis despite clinical exome sequencing and research reanalysis.

2.
Proc Natl Acad Sci U S A ; 121(12): e2310866121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38483996

ABSTRACT

Lymphocyte activation gene-3 (LAG-3) is an inhibitory receptor expressed on activated T cells and an emerging immunotherapy target. Domain 1 (D1) of LAG-3, which has been purported to directly interact with major histocompatibility complex class II (MHCII) and fibrinogen-like protein 1 (FGL1), has been the major focus for the development of therapeutic antibodies that inhibit LAG-3 receptor-ligand interactions and restore T cell function. Here, we present a high-resolution structure of glycosylated mouse LAG-3 ectodomain, identifying that cis-homodimerization, mediated through a network of hydrophobic residues within domain 2 (D2), is critically required for LAG-3 function. Additionally, we found a previously unidentified key protein-glycan interaction in the dimer interface that affects the spatial orientation of the neighboring D1 domain. Mutation of LAG-3 D2 residues reduced dimer formation, dramatically abolished LAG-3 binding to both MHCII and FGL1 ligands, and consequentially inhibited the role of LAG-3 in suppressing T cell responses. Intriguingly, we showed that antibodies directed against D1, D2, and D3 domains are all capable of blocking LAG-3 dimer formation and MHCII and FGL-1 ligand binding, suggesting a potential allosteric model of LAG-3 function tightly regulated by dimerization. Furthermore, our work reveals unique epitopes, in addition to D1, that can be targeted for immunotherapy of cancer and other human diseases.


Subject(s)
Histocompatibility Antigens Class II , T-Lymphocytes , Animals , Humans , Mice , Dimerization , Fibrinogen/metabolism , Ligands , Mutation
3.
J Immunother Cancer ; 10(5)2022 05.
Article in English | MEDLINE | ID: mdl-35580928

ABSTRACT

Adoptive cell therapy is a rapidly advancing approach to cancer immunotherapy that seeks to facilitate antitumor responses by introducing potent effector cells into the tumor microenvironment. Expanded autologous T cells, particularly T cells with engineered T cell receptors (TCR) and chimeric antigen receptor-T cells have had success in various hematologic malignancies but have faced challenges when applied to solid tumors. As a result, other immune subpopulations may provide valuable and orthogonal options for treatment. Natural killer (NK) cells offer the possibility of significant tumor clearance and recruitment of additional immune subpopulations without the need for prior antigen presentation like in T or B cells that could require removal of endogenous antigen specificity mediated via the T cell receptor (TCR and/or the B ecll receptor (BCR). In recent years, NK cells have been demonstrated to be increasingly important players in the immune response against cancer. Here, we review multiple avenues for allogeneic NK cell therapy, including derivation of NK cells from peripheral blood or umbilical cord blood, the NK-92 immortalized cell line, and induced pluripotent stem cells (iPSCs). We also describe the potential of engineering iPSC-derived NK cells and the utility of this platform. Finally, we consider the benefits and drawbacks of each approach and discuss recent developments in the manufacturing and genetic or metabolic engineering of NK cells to have robust and prolonged antitumor responses in preclinical and clinical settings.


Subject(s)
Induced Pluripotent Stem Cells , Neoplasms , Cell- and Tissue-Based Therapy , Humans , Killer Cells, Natural , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Tumor Microenvironment
4.
Nat Med ; 28(2): 333-344, 2022 02.
Article in English | MEDLINE | ID: mdl-35027753

ABSTRACT

The disialoganglioside GD2 is overexpressed on several solid tumors, and monoclonal antibodies targeting GD2 have substantially improved outcomes for children with high-risk neuroblastoma. However, approximately 40% of patients with neuroblastoma still relapse, and anti-GD2 has not mediated significant clinical activity in any other GD2+ malignancy. Macrophages are important mediators of anti-tumor immunity, but tumors resist macrophage phagocytosis through expression of the checkpoint molecule CD47, a so-called 'Don't eat me' signal. In this study, we establish potent synergy for the combination of anti-GD2 and anti-CD47 in syngeneic and xenograft mouse models of neuroblastoma, where the combination eradicates tumors, as well as osteosarcoma and small-cell lung cancer, where the combination significantly reduces tumor burden and extends survival. This synergy is driven by two GD2-specific factors that reorient the balance of macrophage activity. Ligation of GD2 on tumor cells (a) causes upregulation of surface calreticulin, a pro-phagocytic 'Eat me' signal that primes cells for removal and (b) interrupts the interaction of GD2 with its newly identified ligand, the inhibitory immunoreceptor Siglec-7. This work credentials the combination of anti-GD2 and anti-CD47 for clinical translation and suggests that CD47 blockade will be most efficacious in combination with monoclonal antibodies that alter additional pro- and anti-phagocytic signals within the tumor microenvironment.


Subject(s)
Bone Neoplasms , CD47 Antigen , Animals , Cell Line, Tumor , Humans , Immunotherapy , Mice , Neoplasm Recurrence, Local , Phagocytosis , Tumor Microenvironment
5.
Sci Rep ; 10(1): 15171, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32938950

ABSTRACT

V-domain immunoglobulin (Ig) suppressor of T cell activation (VISTA) is an immune checkpoint that maintains peripheral T cell quiescence and inhibits anti-tumor immune responses. VISTA functions by dampening the interaction between myeloid cells and T cells, orthogonal to PD-1 and other checkpoints of the tumor-T cell signaling axis. Here, we report the use of yeast surface display to engineer an anti-VISTA antibody that binds with high affinity to mouse, human, and cynomolgus monkey VISTA. Our anti-VISTA antibody (SG7) inhibits VISTA function and blocks purported interactions with both PSGL-1 and VSIG3 proteins. SG7 binds a unique epitope on the surface of VISTA, which partially overlaps with other clinically relevant antibodies. As a monotherapy, and to a greater extent as a combination with anti-PD1, SG7 slows tumor growth in multiple syngeneic mouse models. SG7 is a promising clinical candidate that can be tested in fully immunocompetent mouse models and its binding epitope can be used for future campaigns to develop species cross-reactive inhibitors of VISTA.


Subject(s)
Antibodies/metabolism , B7 Antigens/antagonists & inhibitors , Epitopes/metabolism , Membrane Proteins/antagonists & inhibitors , Animals , Antigen-Antibody Reactions , B7 Antigens/genetics , B7 Antigens/immunology , Binding Sites , Cell Adhesion Molecules/metabolism , Cell Surface Display Techniques , Cross Reactions , Epitopes/genetics , Female , Humans , Immunoglobulins/metabolism , Macaca fascicularis , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Membrane Glycoproteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Models, Molecular , Protein Binding , Protein Engineering
6.
Front Immunol ; 11: 626820, 2020.
Article in English | MEDLINE | ID: mdl-33658999

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by B cell dysregulation and breaks in tolerance that lead to the production of pathogenic autoantibodies. We performed single-cell RNA sequencing of B cells from healthy donors and individuals with SLE which revealed upregulated CD52 expression in SLE patients. We further demonstrate that SLE patients exhibit significantly increased levels of B cell surface CD52 expression and plasma soluble CD52, and levels of soluble CD52 positively correlate with measures of lupus disease activity. Using CD52-deficient JeKo-1 cells, we show that cells lacking surface CD52 expression are hyperresponsive to B cell receptor (BCR) signaling, suggesting an inhibitory role for the surface-bound protein. In healthy donor B cells, antigen-specific BCR-activation initiated CD52 cleavage in a phospholipase C dependent manner, significantly reducing cell surface levels. Experiments with recombinant CD52-Fc showed that soluble CD52 inhibits BCR signaling in a manner partially-dependent on Siglec-10. Moreover, incubation of unstimulated B cells with CD52-Fc resulted in the reduction of surface immunoglobulin and CXCR5. Prolonged incubation of B cells with CD52 resulted in the expansion of IgD+IgMlo anergic B cells. In summary, our findings suggest that CD52 functions as a homeostatic protein on B cells, by inhibiting responses to BCR signaling. Further, our data demonstrate that CD52 is cleaved from the B cell surface upon antigen engagement, and can suppress B cell function in an autocrine and paracrine manner. We propose that increased expression of CD52 by B cells in SLE represents a homeostatic mechanism to suppress B cell hyperactivity.


Subject(s)
Autoantibodies/blood , B-Lymphocytes/immunology , CD52 Antigen/immunology , Lupus Erythematosus, Systemic/immunology , Receptors, Antigen, B-Cell/metabolism , B-Lymphocytes/metabolism , CD52 Antigen/blood , CD52 Antigen/metabolism , Chemokine CXCL13/metabolism , Gene Expression Regulation/immunology , Genes, MHC Class II/immunology , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/physiopathology , RNA-Seq , Receptors, CXCR5/metabolism , Severity of Illness Index , Signal Transduction/immunology , Single-Cell Analysis , Type C Phospholipases/metabolism
7.
Article in English | MEDLINE | ID: mdl-31131348

ABSTRACT

PURPOSE: Androgen receptor (AR) gene alterations, including ligand-binding domain mutations and copy number (CN) gain, have yet to be fully established as predictive markers of resistance to enzalutamide and abiraterone in men with metastatic castration-resistant prostate cancer (mCRPC). The goal of this study was to validate AR gene alterations detected in cell-free DNA (cfDNA) as markers of enzalutamide and abiraterone resistance in patients with mCRPC. METHODS: Patients with mCRPC (N = 62) were prospectively enrolled between 2014 and 2018. Blood was collected before therapies-enzalutamide (n = 25), abiraterone (n = 35), or enzalutamide and abiraterone (n = 2)-and at disease progression. We used deep next-generation sequencing to analyze cfDNA for sequence variants and CN status in AR and 45 additional cancer-associated genes. Primary end points were prostate-specific antigen response, progression-free survival (PFS), and overall survival (OS). RESULTS: Elevated tumor-specific cfDNA (circulating tumor DNA) was associated with a worse prostate-specific antigen response (hazard ratio [HR], 3.17; 95% CI, 1.11 to 9.05; P = .031), PFS (HR, 1.76; 95% CI, 1.03 to 3.01; P = .039), and OS (HR, 2.92; 95% CI, 1.40 to 6.11; P = .004). AR ligand-binding domain missense mutations (HR, 2.51; 95% CI, 1.15 to 5.72; P = .020) were associated with a shorter PFS in multivariable models. AR CN gain was associated with a shorter PFS; however, significance was lost in multivariable modeling. Genetic alterations in tumor protein p53 (HR, 2.70; 95% CI, 1.27 to 5.72; P = .009) and phosphoinositide 3-kinase pathway defects (HR, 2.62; 95% CI, 1.12 to 6.10; P = .026) were associated with a worse OS in multivariable models. CONCLUSION: These findings support the conclusion that high circulating tumor DNA burden is associated with worse outcomes to enzalutamide and abiraterone in men with mCRPC. Tumor protein p53 loss and phosphoinositide 3-kinase pathway defects were associated with worse OS in men with mCRPC. AR status associations with outcomes were not robust, and additional validation is needed.

8.
J Clin Oncol ; 37(13): 1120-1129, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30865549

ABSTRACT

PURPOSE: Androgen receptor splice variant 7 (AR-V7) results in a truncated receptor, which leads to ligand-independent constitutive activation that is not inhibited by anti-androgen therapies, including abiraterone or enzalutamide. Given that previous reports suggested that circulating tumor cell (CTC) AR-V7 detection is a poor prognostic indicator for the clinical efficacy of secondary hormone therapies, we conducted a prospective multicenter validation study. PATIENTS AND METHODS: PROPHECY ( ClinicalTrials.gov identifier: NCT02269982) is a multicenter, prospective-blinded study of men with high-risk mCRPC starting abiraterone acetate or enzalutamide treatment. The primary objective was to validate the prognostic significance of baseline CTC AR-V7 on the basis of radiographic or clinical progression free-survival (PFS) by using the Johns Hopkins University modified-AdnaTest CTC AR-V7 mRNA assay and the Epic Sciences CTC nuclear-specific AR-V7 protein assay. Overall survival (OS) and prostate-specific antigen responses were secondary end points. RESULTS: We enrolled 118 men with mCRPC who were starting abiraterone or enzalutamide treatment. AR-V7 detection by both the Johns Hopkins and Epic AR-V7 assays was independently associated with shorter PFS (hazard ratio, 1.9 [95% CI, 1.1 to 3.3; P = .032] and 2.4 [95% CI, 1.1 to 5.1; P = .020], respectively) and OS (hazard ratio, 4.2 [95% CI, 2.1 to 8.5] and 3.5 [95% CI, 1.6 to 8.1], respectively) after adjusting for CTC number and clinical prognostic factors. Men with AR-V7-positive mCRPC had fewer confirmed prostate-specific antigen responses (0% to 11%) or soft tissue responses (0% to 6%). The observed percentage agreement between the two AR-V7 assays was 82%. CONCLUSION: Detection of AR-V7 in CTCs by two blood-based assays is independently associated with shorter PFS and OS with abiraterone or enzalutamide, and such men with mCRPC should be offered alternative treatments.


Subject(s)
Androstenes/therapeutic use , Phenylthiohydantoin/analogs & derivatives , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Receptors, Androgen/genetics , Aged , Aged, 80 and over , Benzamides , Humans , Male , Middle Aged , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Nitriles , Phenylthiohydantoin/therapeutic use , Predictive Value of Tests , Progression-Free Survival , Prospective Studies , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Protein Isoforms , Receptors, Androgen/metabolism , Reproducibility of Results , Treatment Outcome
9.
Oncotarget ; 9(47): 28561-28571, 2018 Jun 19.
Article in English | MEDLINE | ID: mdl-29983880

ABSTRACT

AR-V7-expressing metastatic prostate cancer is an aggressive phenotype with poor progression-free survival (PFS) and overall survival (OS). Preliminary evidence suggests that AR-V7-positive tumors may be enriched for DNA-repair defects, perhaps rendering them more sensitive to immune-checkpoint blockade. We enrolled 15 metastatic prostate cancer patients with AR-V7-expressing circulating tumor cells into a prospective phase-2 trial. Patients received nivolumab 3 mg/kg plus ipilimumab 1 mg/kg every 3 weeks for four doses, then maintenance nivolumab 3 mg/kg every 2 weeks. Targeted next-generation sequencing was performed to determine DNA-repair deficiency (DRD) status. Outcomes included PSA response rates, objective response rates (ORR), PSA progression-free survival (PSA-PFS), clinical/radiographic PFS and OS. Median age of participants was 65, median PSA was 115 ng/mL, 67% had visceral metastases, and 60% had ≥4 prior systemic therapies. Six of 15 men (40%) had DRD mutations (three in BRCA2, two in ATM, one in ERCC4; none had microsatellite instability). Overall, the PSA response rate was 2/15 (13%), ORR was 2/8 (25%) in those with measurable disease, median PSA-PFS was 3.0 (95%CI 2.1-NR) months, PFS was 3.7 (95%CI 2.8-7.5) months, and OS was 8.2 (95%CI 5.5-10.4) months. Outcomes appeared generally better in DRD+ vs. DRD- tumors with respect to PSA responses (33% vs. 0%; P=0.14, nonsignificant), ORR (40% vs. 0%; P=0.46, nonsignificant), PSA-PFS (HR 0.19; P<0.01, significant), PFS (HR 0.31; P=0.01, significant), and OS (HR 0.41; P=0.11, nonsignificant). There were no new safety concerns. Ipilimumab plus nivolumab demonstrated encouraging efficacy in AR-V7-positive prostate cancers with DRD mutations, but not in the overall study population.

10.
Eur Urol ; 74(2): 218-225, 2018 08.
Article in English | MEDLINE | ID: mdl-29439820

ABSTRACT

BACKGROUND: Inherited DNA-repair gene mutations are more prevalent in men with advanced prostate cancer than previously thought, but their clinical implications are not fully understood. OBJECTIVE: To investigate the clinical significance of germline DNA-repair gene alterations in men with metastatic castration-resistant prostate cancer (mCRPC) receiving next-generation hormonal therapy (NHT), with a particular emphasis on BRCA/ATM mutations. DESIGN, SETTING, AND PARTICIPANTS: We interrogated 50 genes for pathogenic or likely pathogenic germline mutations using leukocyte DNA from 172 mCRPC patients beginning treatment with first-line NHT with abiraterone or enzalutamide. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We assessed the impact of germline DNA-repair gene mutation status on ≥50% and ≥90% PSA responses, PSA progression-free survival (PSA-PFS), clinical/radiologic progression-free survival (PFS), and overall survival (OS). Survival outcomes were adjusted using propensity score-weighted multivariable Cox regression analyses. RESULTS AND LIMITATIONS: Among 172 mCRPC patients included, germline mutations (in any DNA-repair gene) were found in 12% (22/172) of men, and germline BRCA/ATM mutations specifically in 5% (9/172) of men. In unadjusted analyses, outcomes to first-line NHT were better in men with germline BRCA/ATM mutations (vs no mutations) with respect to PSA-PFS (hazard ratio [HR] 0.47; p=0.061), PFS (HR 0.50; p=0.090), and OS (HR 0.28; p=0.059). In propensity score-weighted multivariable analyses, outcomes were superior in men with germline BRCA/ATM mutations with respect to PSA-PFS (HR 0.48, 95% confidence interval [CI] 0.25-0.92; p=0.027), PFS (HR 0.52, 95% CI 0.28-0.98; p=0.044), and OS (HR 0.34, 95% CI 0.12-0.99; p=0.048), but not in men with non-BRCA/ATM germline mutations (all p>0.10). These results require prospective validation, and our conclusions are limited by the small number of patients (n=9) with BRCA/ATM mutations. CONCLUSIONS: Outcomes to first-line NHT appear better in mCRPC patients harboring germline BRCA/ATM mutations (vs no mutations), but not for patients with other non-BRCA/ATM germline mutations. PATIENT SUMMARY: Patients with metastatic castration-resistant prostate cancer and harboring germline mutations in BRCA1/2 and ATM benefit from treatment with abiraterone and enzalutamide.


Subject(s)
Androgen Antagonists/administration & dosage , Androstenes/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/genetics , DNA Repair Enzymes/genetics , Germ-Line Mutation , Phenylthiohydantoin/analogs & derivatives , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Aged , Androgen Antagonists/adverse effects , Androstenes/adverse effects , Antigens, Neoplasm/blood , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Ataxia Telangiectasia Mutated Proteins/genetics , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Benzamides , Biomarkers, Tumor/blood , Clinical Decision-Making , DNA Mutational Analysis , GPI-Linked Proteins/blood , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Neoplasm Metastasis , Neoplasm Proteins/blood , Nitriles , Phenotype , Phenylthiohydantoin/administration & dosage , Phenylthiohydantoin/adverse effects , Precision Medicine , Progression-Free Survival , Prospective Studies , Prostatic Neoplasms, Castration-Resistant/blood , Prostatic Neoplasms, Castration-Resistant/pathology , Time Factors , Treatment Outcome
11.
Prostate ; 78(5): 401-407, 2018 04.
Article in English | MEDLINE | ID: mdl-29368341

ABSTRACT

BACKGROUND: Germline mutations in genes mediating DNA repair are common in men with recurrent and advanced prostate cancer, and their presence may alter prognosis and management. We aimed to define pathological and clinical characteristics associated with germline DNA-repair gene mutations, to facilitate selection of patients for germline testing. METHODS: We retrospectively evaluated 150 unselected patients with recurrent or metastatic prostate cancer who were offered germline genetic testing by a single oncologist using a clinical-grade assay (Color Genomics). This platform utilizes next-generation sequencing from saliva to interrogate 30 cancer-susceptibility genes. Presence or absence of a deleterious germline mutation was correlated with histological and clinical characteristics, and with family history of cancer. All patients with DNA-sequence alterations (pathogenic or variants) were offered genetic counseling. RESULTS: Between July 2016 and July 2017, 150 consecutive patients underwent germline testing; pathogenic mutations were identified in 21 men (14%). Among those with germline mutations, 9 (43%) were in BRCA2, 3 (14%) were in ATM, 3 (14%) were in CHEK2, and 2 (9%) were in BRCA1. While there were no associations between germline mutations and age, tumor stage, Gleason sum or family history; mutation-positive patients had lower median PSA levels at diagnosis (5.5 vs 8.6 ng/mL, P = 0.01) and unique pathologic features. Namely, men with germline mutations were more likely to harbor intraductal/ductal histology (48% vs 12%, P < 0.01) and lymphovascular invasion (52% vs 14%, P < 0.01). Finally, 44% of patients with a positive germline test would not have been offered genetic screening according to current National Comprehensive Cancer Network (NCCN) guidelines. CONCLUSIONS: Presence of intraductal/ductal histology and lymphovascular invasion appear to be associated with pathogenic germline DNA-repair gene mutations in men with prostate cancer, and identification of these features may help to select patients for germline testing. NCCN guidelines may be inadequate in predicting which prostate cancer patients should undergo genetic screening.


Subject(s)
DNA Repair , Germ-Line Mutation , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Humans , Lymph Nodes/pathology , Lymphatic Metastasis , Male , Middle Aged , Neoplasm Metastasis , Neoplasm Staging , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Retrospective Studies
12.
Eur Urol ; 73(5): 727-735, 2018 05.
Article in English | MEDLINE | ID: mdl-28866255

ABSTRACT

BACKGROUND: Androgen receptor splice variant 7 (AR-V7) has been implicated in resistance to abiraterone and enzalutamide treatment in men with metastatic castration-resistant prostate cancer (mCRPC). Tissue- or cell-based in situ detection of AR-V7, however, has been limited by lack of specificity. OBJECTIVE: To address current limitations in precision measurement of AR-V7 by developing a novel junction-specific AR-V7 RNA in situ hybridization (RISH) assay compatible with automated quantification. DESIGN, SETTING, AND PARTICIPANTS: We designed a RISH method to visualize single splice junctions in cells and tissue. Using the validated assay for junction-specific detection of the full-length AR (AR-FL) and AR-V7, we generated quantitative data, blinded to clinical data, for 63 prostate tumor biopsies. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We evaluated clinical correlates of AR-FL/AR-V7 measurements, including association with prostate-specific antigen progression-free survival (PSA-PFS) and clinical and radiographic progression-free survival (PFS), in a subset of patients starting treatment with abiraterone or enzalutamide following biopsy. RESULTS AND LIMITATIONS: Quantitative AR-FL/AR-V7 data were generated from 56 of the 63 (88.9%) biopsy specimens examined, of which 44 were mCRPC biopsies. Positive AR-V7 signals were detected in 34.1% (15/44) mCRPC specimens, all of which also co-expressed AR-FL. The median AR-V7/AR-FL ratio was 11.9% (range 2.7-30.3%). Positive detection of AR-V7 was correlated with indicators of high disease burden at baseline. Among the 25 CRPC biopsies collected before treatment with abiraterone or enzalutamide, positive AR-V7 detection, but not higher AR-FL, was significantly associated with shorter PSA-PFS (hazard ratio 2.789, 95% confidence interval 1.12-6.95; p=0.0081). CONCLUSIONS: We report for the first time a RISH method for highly specific and quantifiable detection of splice junctions, allowing further characterization of AR-V7 and its clinical significance. PATIENT SUMMARY: Higher AR-V7 levels detected and quantified using a novel method were associated with poorer response to abiraterone or enzalutamide in prostate cancer.


Subject(s)
Androgen Antagonists/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Protein Isoforms/genetics , Receptors, Androgen/genetics , Aged , Biopsy, Needle , Disease-Free Survival , Humans , Immunohistochemistry , In Situ Hybridization/methods , Logistic Models , Male , Middle Aged , Multivariate Analysis , Neoplasm Invasiveness/pathology , Neoplasm Metastasis , Neoplasm Staging , Prognosis , Prostatic Neoplasms, Castration-Resistant/mortality , Prostatic Neoplasms, Castration-Resistant/pathology , Survival Analysis
13.
Lancet Oncol ; 19(1): 76-86, 2018 01.
Article in English | MEDLINE | ID: mdl-29248236

ABSTRACT

BACKGROUND: Prostate cancer that progresses after enzalutamide treatment is poorly responsive to further antiandrogen therapy, and paradoxically, rapid cycling between high and low serum testosterone concentrations (bipolar androgen therapy [BAT]) in this setting might induce tumour responses. We aimed to evaluate BAT in patients with metastatic castration-resistant prostate cancer that progressed after enzalutamide. METHODS: We did this single-centre, open-label, phase 2, multicohort study in the USA. We included patients aged 18 years or older who had histologically confirmed and radiographically documented metastatic castration-resistant prostate cancer, with no more than two previous second-line hormonal therapies, and a castrate concentration of testosterone. Patients were asymptomatic, with Eastern Cooperative Oncology Group performance status of 0-2, and did not have high-risk lesions for tumour flare (eg, >5 sites of visceral disease or bone lesions with impending fracture). For the cohort reported here, we required patients to have had progression on enzalutamide with a continued prostate-specific antigen (PSA) rise after enzalutamide treatment discontinuation. Patients received BAT, which consisted of intramuscular testosterone cipionate 400 mg every 28 days until progression and continued luteinising hormone-releasing hormone agonist therapy. Upon progression after BAT, men were rechallenged with oral enzalutamide 160 mg daily. The co-primary endpoints were investigator-assessed 50% decline in PSA concentration from baseline (PSA50) for BAT (for all patients who received at least one dose) and for enzalutamide rechallenge (based on intention-to-treat analysis). These data represent the final analysis for the post-enzalutamide cohort, while two additional cohorts (post-abiraterone and newly castration-resistant prostate cancer) are ongoing. The trial is registered with ClinicalTrials.gov, number NCT02090114. FINDINGS: Between Aug 28, 2014, and May 18, 2016, we accrued 30 eligible patients and treated them with BAT. Nine (30%; 95% CI 15-49; p<0·0001) of 30 patients achieved a PSA50 to BAT. 29 patients completed BAT and 21 proceeded to enzalutamide rechallenge, of whom 15 (52%; 95% CI 33-71; p<0·0001) achieved a PSA50 response. During BAT, the only grade 3-4 adverse event occurring in more than one patient was hypertension (three [10%] patients). Other grade 3 or worse adverse events occurring during BAT in one [3%] patient each were pulmonary embolism, myocardial infarction, urinary obstruction, gallstone, and sepsis. During enzalutamide retreatment, no grade 3-4 toxicities occurred in more than one patient. No treatment-related deaths were reported during either BAT or enzalutamide retreatment. INTERPRETATION: BAT is a safe therapy that resulted in responses in asymptomatic men with metastatic castration-resistant prostate cancer and also resensitisation to enzalutamide in most patients undergoing rechallenge. Further studies with BAT are needed to define the potential clinical role for BAT in the management of metastatic castration-resistant prostate cancer and the optimal strategy for sequencing between androgen and antiandrogen therapies in metastatic castration-resistant prostate cancer to maximise therapeutic benefit to patients. FUNDING: National Institutes of Health and National Cancer Institute.


Subject(s)
Androgens/administration & dosage , Antineoplastic Agents, Hormonal/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Phenylthiohydantoin/analogs & derivatives , Prostatic Neoplasms, Castration-Resistant/drug therapy , Testosterone/analogs & derivatives , Aged , Aged, 80 and over , Androgens/adverse effects , Antineoplastic Agents, Hormonal/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Baltimore , Benzamides , Disease Progression , Gonadotropin-Releasing Hormone/agonists , Gonadotropin-Releasing Hormone/metabolism , Humans , Kallikreins/blood , Male , Middle Aged , Neoplasm Metastasis , Nitriles , Phenylthiohydantoin/administration & dosage , Phenylthiohydantoin/adverse effects , Prostate-Specific Antigen/blood , Prostatic Neoplasms, Castration-Resistant/blood , Prostatic Neoplasms, Castration-Resistant/pathology , Testosterone/administration & dosage , Testosterone/adverse effects , Testosterone/blood , Time Factors , Treatment Outcome
14.
JCO Precis Oncol ; 20172017.
Article in English | MEDLINE | ID: mdl-29170762

ABSTRACT

PURPOSE: A splice variant of the androgen receptor, AR-V7, confers resistance to AR-targeted therapies (ATTs) but not taxane chemotherapies in patients with metastatic castration-resistant prostate cancer. Since August 2015, a clinical-grade assay to detect AR-V7 messenger RNA expression in circulating tumors cells (CTCs) has been available to providers through a Clinical Laboratory Improvement Amendments-certified laboratory at Johns Hopkins University. METHODS: We contacted ordering providers of the first 150 consecutive tests by using a questionnaire-based survey to determine how the results of AR-V7 testing were used to influence clinical practice. RESULTS: In all, 142 (95%) of 150 questionnaires were completed by 38 providers from 29 sites across the United States and Canada. AR-V7 test results were reported either as CTC- (28%), CTC+/AR-V7- (30%), or CTC+/AR-V7+ (42%). Prevalence of AR-V7 detection increased with prior exposure to ATTs (abiraterone and enzalutamide naïve, 22%; after abiraterone or enzalutamide, 35%; after abiraterone and enzalutamide, 43%). Overall, management was affected by AR-V7 testing in 53% of the patients and even more often with CTC+/AR-V7+ results. AR-V7+ patients were commonly switched from ATT to taxane chemotherapy (43%) or were offered a clinical trial (43%); management remained unchanged in only 14% of these patients. Overall, patients who had a change in management on the basis of AR-V7 testing were significantly more likely to achieve a physician-reported 50% decline in prostate-specific antigen response on next-line therapy than those who did not change treatment (54% v 31%; P = .015). CONCLUSION: Providers used AR-V7 testing to influence clinical decision making more often than not. Physicians reported thatmenwithAR-V7+results had the most treatment changes, and such men were preferentially managed with taxane therapy or offered a clinical trial, which may have improved outcomes.

15.
J Clin Oncol ; 35(19): 2149-2156, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28384066

ABSTRACT

Purpose We reported previously that the detection of androgen receptor splice variant-7 (AR-V7) mRNA in circulating tumor cells (CTCs) correlated with poor outcomes from the use of abiraterone and enzalutamide in patients with castration-resistant prostate cancer (CRPC). Here, we expanded our cohort size to better characterize the prognostic significance of AR-V7 in this setting. Methods We prospectively enrolled 202 patients with CRPC starting abiraterone or enzalutamide and investigated the prognostic value of CTC detection (+ v -) and AR-V7 detection (+ v -) using a CTC-based AR-V7 mRNA assay. We examined ≥ 50% prostate-specific antigen (PSA) responses, PSA progression-free survival, clinical and radiologic progression-free survival, and overall survival. We constructed multivariable models adjusting for PSA, Gleason sum, number of prior hormone therapies, prior abiraterone or enzalutamide use, prior taxane use, presence of visceral metastases, and Eastern Cooperative Oncology Group score. We also separately examined the first-line and second-line novel hormonal therapy (NHT) settings. Results Median follow-up times were 15.0, 21.7, and 14.6 months for CTC-, CTC+/AR-V7- and CTC+/AR-V7+ patients, respectively. CTC+/AR-V7+ patients were more likely to have Gleason scores ≥ 8 ( P = .05), metastatic disease at diagnosis ( P = .01), higher PSA ( P < .01), prior abiraterone or enzalutamide use ( P = .03), prior taxane use ( P = .02), and Eastern Cooperative Oncology Group ≥ 1 ( P = .01). Outcomes for the overall cohort (and separately for the first-line and second-line NHT cohorts) were best for CTC- patients, intermediate for CTC+/AR-V7- patients, and worse for CTC+/AR-V7+ patients. These correlations remained significant in multivariable models. Conclusion This expanded analysis further characterizes the importance of CTC-based AR-V7 mRNA detection in predicting outcomes in patients with CRPC receiving first- and second-line NHT and, to the best of our knowledge, is the first to suggest that this assay be interpreted using three separate prognostic categories: CTC-, CTC+/AR-V7-, and CTC+/AR-V7+.


Subject(s)
Androstenes/therapeutic use , Phenylthiohydantoin/analogs & derivatives , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , RNA, Messenger/blood , Receptors, Androgen/genetics , Aged , Antineoplastic Agents/therapeutic use , Benzamides , Cohort Studies , Disease-Free Survival , Humans , Kallikreins/blood , Male , Neoplasm Metastasis , Nitriles , Phenylthiohydantoin/therapeutic use , Prospective Studies , Prostate-Specific Antigen/blood , Prostatic Neoplasms, Castration-Resistant/blood , Protein Isoforms , RNA, Messenger/genetics , Treatment Outcome
16.
Oncotarget ; 8(9): 15651-15662, 2017 Feb 28.
Article in English | MEDLINE | ID: mdl-28152506

ABSTRACT

Somatic genetic alterations including copy number and point mutations in the androgen receptor (AR) are associated with resistance to therapies targeting the androgen/AR axis in patients with metastatic castration resistant prostate cancer (mCRPC). Due to limitations associated with biopsying metastatic lesions, plasma derived cell-free DNA (cfDNA) is increasingly being used as substrate for genetic testing. AR mutations detected by deep next generation sequencing (NGS) of cfDNA from patients with mCRPC have been reported at allelic fractions ranging from over 25% to below 1%. The lower bound threshold for accurate mutation detection by deep sequencing of cfDNA has not been comprehensively determined and may have locus specific variability. Herein, we used NGS for AR mutation discovery in plasma-derived cfDNA from patients with mCRPC and then used droplet digital polymerase chain reaction (ddPCR) for validation. Our findings show the AR (tTC>cTC) F877L hotspot was prone to false positive mutations during NGS. The rate of error at AR (tTC>cTC) F877L during amplification prior to ddPCR was variable among high fidelity polymerases. These results highlight the importance of validating low-abundant mutations detected by NGS and optimizing and controlling for amplification conditions prior to ddPCR.


Subject(s)
DNA, Neoplasm/genetics , Mutation , Prostatic Neoplasms, Castration-Resistant/genetics , Receptors, Androgen/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , DNA, Neoplasm/blood , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Middle Aged , Polymerase Chain Reaction/methods , Prostatic Neoplasms, Castration-Resistant/blood , Prostatic Neoplasms, Castration-Resistant/diagnosis , Reproducibility of Results , Sensitivity and Specificity
17.
J Mol Diagn ; 19(1): 115-125, 2017 01.
Article in English | MEDLINE | ID: mdl-27916435

ABSTRACT

Patients with castration-resistant prostate cancer (CRPC) often are treated with drugs that target the androgen receptor (AR) ligand-binding domain. Constitutively active AR splice variant 7 (AR-V7) lacks the ligand-binding domain and, if detected in circulating tumor cells, may be associated with resistance to these agents. We validated an AR-V7 assay in a Clinical Laboratory Improvement Amendments (CLIA)-certified laboratory. Circulating tumor cells were isolated, and mRNA was reverse-transcribed into cDNA. Real-time quantitative PCR amplification of reference transcripts (beta-actin and glyceraldehyde-3-phosphate dehydrogenase), prostate-specific transcripts (prostate-specific membrane antigen, prostate-specific antigen, and AR-full length), and AR-V7 was performed. Specimens for validation included an AR-V7 expressing prostate cancer (LNCaP95), 38 peripheral blood controls, and 21 blood samples from CRPC patients. The assay detected as few as five LNCaP95 cells spiked into peripheral blood, showing high analytical sensitivity. Multiple inter-run and intrarun replicates of LNCaP95 cell line experiments yielded similar cycle threshold values for all genes, showing high analytical precision (AR-V7 cycle threshold CV of 0.67%). All 38 healthy control samples were negative for AR-V7, showing high diagnostic specificity (100%). The diagnostic accuracy was confirmed by concurrent testing of 21 CRPC samples in the research laboratory and the clinical diagnostic laboratory: concordance in AR-V7 status was achieved in all cases (positive in 4, negative in 17) (100% accuracy). This first validated clinical assay detects the AR-V7 with high analytical sensitivity, precision, specificity, and accuracy.


Subject(s)
Biomarkers, Tumor/genetics , Molecular Diagnostic Techniques , Prostatic Neoplasms, Castration-Resistant/genetics , Receptors, Androgen/genetics , Adult , Aged , Biomarkers, Tumor/metabolism , Case-Control Studies , Cell Line, Tumor , Female , Gene Expression , Humans , Limit of Detection , Male , Middle Aged , Prostatic Neoplasms, Castration-Resistant/diagnosis , Protein Isoforms/genetics , Quality Improvement , Receptors, Androgen/metabolism , Young Adult
18.
Curr Urol Rep ; 17(4): 29, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26902623

ABSTRACT

While androgen ablation remains a mainstay for advanced prostate cancer therapy, nearly all patients will inevitably develop disease escape with time. Upon the development of castration-resistant prostate cancer, other androgen-axis-targeted treatments may be added in an effort to starve the disease of its androgen signaling. Nevertheless, additional androgen-pathway resistance usually develops to these novel hormonal therapies. In this review, we will discuss the resistance mechanisms to modern androgen-axis modulators and how these alterations can influence a patient's response to novel hormonal therapy. We conceptualize these resistance pathways as three broad categories: (1) reactivation of androgen/AR-signaling, (2) AR bypass pathways, and (3) androgen/AR-independent mechanisms. We highlight examples of each, as well as potential therapeutic approaches to overcome these resistance mechanisms.


Subject(s)
Androgens/metabolism , Drug Resistance, Neoplasm , Prostatic Neoplasms/drug therapy , Alternative Splicing , Androgen Antagonists/therapeutic use , Animals , Humans , Male , Prostatic Neoplasms/genetics , Receptors, Androgen/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...