Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Genet ; 50(2): 143-149, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30730042

ABSTRACT

The llama (Lama glama) is a fiber-producing species that presents a wide range of coat colors, among which white is one of the most important for the textile industry. However, there is little information about the molecular mechanisms that control the white phenotype in this species. In domestic mammals, a white coat is usually produced by mutations in the KIT proto-oncogene receptor tyrosine kinase (KIT) and microphthalmia-associated transcription factor (MITF) genes. In this work we have sequenced and described the coding regions of KIT and MITF-M, the melanocyte-specific isoform, and the two transcriptional variants MITF-M(-) and MITF-M(+). Moreover, we studied the expression of these genes in the skin of white and colored llamas. Although no variants were revealed to be associated with white coat color, significant differences between phenotypes were observed in the expression levels of KIT and MITF-M. Interestingly, white llamas expressed less MITF-M(+) than did colored ones, which is consistent with a consequent reduction in the synthesis of melanin. Even though our results indicate that downregulation of KIT and MITF-M expression is involved in white phenotype production in llamas, the causative gene of white coat color remains unknown.


Subject(s)
Camelids, New World/genetics , Gene Expression Regulation , Genetic Variation , Microphthalmia-Associated Transcription Factor/genetics , Open Reading Frames/genetics , Proto-Oncogene Proteins c-kit/genetics , Animals , Camelids, New World/physiology , Hair/chemistry , Hair Color/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Sequence Analysis, DNA/veterinary
2.
Genetica ; 144(1): 85-97, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26842726

ABSTRACT

The vicuña (Vicugna vicugna) was indiscriminately hunted for more than 400 years and, by the end of 1960s, it was seriously endangered. At that time, a captive breeding program was initiated in Argentina by the National Institute of Agricultural Technology (INTA) with the aim of preserving the species. Nowadays, vicuñas are managed in captivity and in the wild to obtain their valuable fiber. The current genetic status of Argentinean vicuña populations is virtually unknown. Using mitochondrial DNA and microsatellite markers, we assessed levels of genetic diversity of vicuña populations managed in the wild and compared it with a captive population from INTA. Furthermore, we examined levels of genetic structure and evidence for historical bottlenecks. Overall, all populations revealed high genetic variability with no signs of inbreeding. Levels of genetic diversity between captive and wild populations were not significantly different, although the captive population showed the lowest estimates of allelic richness, number of mitochondrial haplotypes, and haplotype diversity. Significant genetic differentiation at microsatellite markers was found between free-living populations from Jujuy and Catamarca provinces. Moreover, microsatellite data also revealed genetic structure within the Catamarca management area. Genetic signatures of past bottlenecks were detected in wild populations by the Garza Williamson test. Results from this study are discussed in relation to the conservation and management of the species.


Subject(s)
Camelids, New World/genetics , Conservation of Natural Resources , Genetic Variation , Genetics, Population , Alleles , Animals , Argentina , Bayes Theorem , Breeding , DNA, Mitochondrial/genetics , Haplotypes , Microsatellite Repeats , Models, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...