Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Environ ; 26(6): 907-914, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12803618

ABSTRACT

In order to investigate the molecular basis of high-affinity ammonium absorption by roots of rice plants (Oryza sativa subspecies indica) the expression patterns of three members of the AMT1 family of genes in rice seedling roots in response to altered nitrogen provision and diurnal changes in irradiance were examined. The 13NH4+ influx and transcript levels of OsAMT1.1 in roots decreased several fold within 48 h when plants acclimated to 10 micro m external NH4+ for 3 weeks were transferred to 10 mm NH4+. Likewise when plants acclimated in 10 mm NH4+ were transferred to 10 micro m NH4+, there was an equally rapid up-regulation of OsAMT1.1 and 13NH4+ influx in the roots. Changes in transcript abundance of OsAMT1.2 following these treatments were approximately 50% less than in OsAMT1.1, and changes of OsAMT1.3 expression were even less. By contrast, in response to the diurnal changes of irradiance, root transcript abundance of OsAMT1.3 and 15NH4+ influx increased approximately three-fold late in the photoperiod, whereas OsAMT1.1 and OsAMT1.2 exhibited only modest changes. The present results suggest that high-affinity NH4+ influx is differentially regulated at the transcriptional level through the expression of three members of the OsAMT1 family of genes in roots of rice seedlings in response to changes of N status and daily irradiance. In general, these findings are in agreement with earlier observations in Arabidopsis and tomato.

2.
Plant J ; 19(2): 143-52, 1999 Jul.
Article in English | MEDLINE | ID: mdl-10476061

ABSTRACT

The mechanisms involved in regulating high-affinity ammonium (NH4+) uptake and the expression of the AtAMT1 gene encoding a putative high-affinity NH4+ transporter were investigated in the roots of Arabidopsis thaliana. Under conditions of steady-state nitrogen (N) supply, transcript levels of the AtAMT1 gene and Vmax values for high-affinity 13NH4+ influx were inversely correlated with levels of N provision. Following re-supply of NH4NO3 to N-starved plants, AtAMT1 mRNA levels and 13NH4+ influx declined rapidly but remained high when the conversion of NH4+ to glutamine (Gln) was blocked with methionine sulfoximine (MSX). This result demonstrates that end products of NH4+ assimilation, rather than NH4+ itself, are responsible for regulating AtAMT1 gene expression. Consistent with this hypothesis, AtAMT1 gene expression and NH4+ influx were suppressed by provision of Gln alone, or together with NH4NO3 plus MSX. Furthermore, AtAMT1 transcript levels and 13NH4+ influx were negatively correlated with root Gln concentrations, following re-supply of N to N-starved plants. In addition to this level of control, the data suggest that high cytoplasmic [NH4+] may inhibit NH4+ influx.


Subject(s)
Arabidopsis/genetics , Carrier Proteins/genetics , Cation Transport Proteins , Plant Proteins , Plant Roots/metabolism , Quaternary Ammonium Compounds/pharmacokinetics , Arabidopsis/drug effects , Arabidopsis/metabolism , Biological Transport/drug effects , Cell Membrane/metabolism , Cytoplasm/metabolism , Gene Expression Regulation, Plant , Glutamine/metabolism , Nitrates/pharmacology , Quaternary Ammonium Compounds/metabolism , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Time Factors , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...