Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37645845

ABSTRACT

The C. difficile binary toxin (CDT) enters host cells via endosomal delivery like many other 'AB'-type binary toxins. In this study, the cell-binding component of CDT, termed CDTb, was found to bind and form pores in lipid bilayers upon depleting free Ca 2+ ion concentrations, and not by lowering pH, as found for other binary toxins (i.e., anthrax). Cryoelectron microscopy, nuclear magnetic resonance spectroscopy, surface plasmon resonance, electrochemical impedance spectroscopy, CDT toxicity studies, and site directed mutagenesis show that dissociation of Ca 2+ from a single site in receptor binding domain 1 (RBD1) of CDTb is consistent with a molecular mechanism in which Ca 2+ dissociation from RBD1 induces a "trigger" via conformational exchange that enables CDTb to bind and form pores in endosomal membrane bilayers as free Ca 2+ concentrations decrease during CDT endosomal delivery.

2.
Toxins (Basel) ; 13(12)2021 12 11.
Article in English | MEDLINE | ID: mdl-34941724

ABSTRACT

We are studying the structures of bacterial toxins that form ion channels and enable macromolecule transport across membranes. For example, the crystal structure of the Staphylococcus aureus α-hemolysin (α-HL) channel in its functional state was confirmed using neutron reflectometry (NR) with the protein reconstituted in membranes tethered to a solid support. This method, which provides sub-nanometer structural information, could also test putative structures of the Bacillus anthracis protective antigen 63 (PA63) channel, locate where B. anthracis lethal factor and edema factor toxins (LF and EF, respectively) bind to it, and determine how certain small molecules can inhibit the interaction of LF and EF with the channel. We report here the solution structures of channel-forming PA63 and its precursor PA83 (which does not form channels) obtained with small angle neutron scattering. At near neutral pH, PA83 is a monomer and PA63 a heptamer. The latter is compared to two cryo-electron microscopy structures. We also show that although the α-HL and PA63 channels have similar structural features, unlike α-HL, PA63 channel formation in lipid bilayer membranes ceases within minutes of protein addition, which currently precludes the use of NR for elucidating the interactions between PA63, LF, EF, and potential therapeutic agents.


Subject(s)
Antigens, Bacterial/analysis , Antigens, Bacterial/chemistry , Bacillus anthracis/chemistry , Bacterial Toxins/analysis , Bacterial Toxins/chemistry , Protective Agents/analysis , Protective Agents/chemistry , Kinetics , Molecular Structure , Scattering, Small Angle
3.
Sci Rep ; 11(1): 12620, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34135370

ABSTRACT

In the search for novel broad-spectrum therapeutics to fight chronic infections, inflammation, and cancer, host defense peptides (HDPs) have garnered increasing interest. Characterizing their biologically-active conformations and minimum motifs for function represents a requisite step to developing them into efficacious and safe therapeutics. Here, we demonstrate that metallating HDPs with Cu2+ is an effective chemical strategy to improve their cytotoxicity on cancer cells. Mechanistically, we find that prepared as Cu2+-complexes, the peptides not only physically but also chemically damage lipid membranes. Our testing ground features piscidins 1 and 3 (P1/3), two amphipathic, histidine-rich, membrane-interacting, and cell-penetrating HDPs that are α-helical bound to membranes. To investigate their membrane location, permeabilization effects, and lipid-oxidation capability, we employ neutron reflectometry, impedance spectroscopy, neutron diffraction, and UV spectroscopy. While P1-apo is more potent than P3-apo, metallation boosts their cytotoxicities by up to two- and seven-fold, respectively. Remarkably, P3-Cu2+ is particularly effective at inserting in bilayers, causing water crevices in the hydrocarbon region and placing Cu2+ near the double bonds of the acyl chains, as needed to oxidize them. This study points at a new paradigm where complexing HDPs with Cu2+ to expand their mechanistic reach could be explored to design more potent peptide-based anticancer therapeutics.


Subject(s)
Antineoplastic Agents/pharmacology , Cell-Penetrating Peptides/pharmacology , Copper/chemistry , Lipid Bilayers/chemistry , A549 Cells , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Cell-Penetrating Peptides/chemistry , Fish Proteins/chemistry , Fish Proteins/pharmacology , HeLa Cells , Humans , Lipid Peroxidation , Models, Molecular
4.
J Colloid Interface Sci ; 594: 279-289, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33765647

ABSTRACT

Composition and asymmetry of lipid membranes provide a means for regulation of trans-membrane permeability of ions and small molecules. The pH dependence of these processes plays an important role in the functioning and survival of cells. In this work, we study the pH dependence of membrane electrical resistance and capacitance using electrochemical impedance spectroscopy (EIS), surface plasmon resonance (SPR) and neutron reflectometry (NR) measurements of biomimetic tethered bilayer lipid membranes (tBLMs). tBLMs were prepared with single-component phospholipid compositions, as well as mixtures of phospholipids (phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, sphingomyelin and cholesterol) that mimic the inner- and outer- leaflets of plasma cell membranes. We found that all studied tBLMs have a resistance maximum at pHs near the pKas of the phospholipids. SPR and NR indicated that surface concentration of phospholipids and the thickness of the hydrophobic part of the membrane did not change versus pH. We postulate that these maxima are the result of protonation of the phosphate oxygen of the phospholipids and that hydronium ions play a major role in the conductance at pHs < pKas while sodium ions play the major role at pHs > pKas. An additional sharp resistance maximum of the PE tBLMs found at pH 5.9 and most likely represents the phosphatidylethanolamine's isoelectric point. The data show the key roles of the characteristic parts of phospholipid molecules: terminal group (choline, carboxyl, amine), phosphate, glycerol and ester oxygens on the permeability and selectivity of ions through the membrane. The interactions between these groups lead to significant differences in the electrical properties of biomimetic models of inner- and outer- leaflets of the plasma cell membranes.


Subject(s)
Biomimetics , Lipid Bilayers , Cell Membrane , Phosphatidylcholines , Phospholipids
5.
Biophys J ; 118(5): 1044-1057, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32032504

ABSTRACT

Aimed at reproducing the results of electrophysiological studies of synaptic signal transduction, conventional models of neurotransmission are based on the specific binding of neurotransmitters to ligand-gated receptor ion channels. However, the complex kinetic behavior observed in synaptic transmission cannot be reproduced in a standard kinetic model without the ad hoc postulation of additional conformational channel states. On the other hand, if one invokes unspecific neurotransmitter adsorption to the bilayer-a process not considered in the established models-the electrophysiological data can be rationalized with only the standard set of three conformational receptor states that also depend on this indirect coupling of neurotransmitters via their membrane interaction. Experimental verification has been difficult because binding affinities of neurotransmitters to the lipid bilayer are low. We quantify this interaction with surface plasmon resonance to measure equilibrium dissociation constants in neurotransmitter membrane association. Neutron reflection measurements on artificial membranes, so-called sparsely tethered bilayer lipid membranes, reveal the structural aspects of neurotransmitters' association with zwitterionic and anionic bilayers. We thus establish that serotonin interacts nonspecifically with the membrane at physiologically relevant concentrations, whereas γ-aminobutyric acid does not. Surface plasmon resonance shows that serotonin adsorbs with millimolar affinity, and neutron reflectometry shows that it penetrates the membrane deeply, whereas γ-aminobutyric is excluded from the bilayer.


Subject(s)
Lipid Bilayers , Neurotransmitter Agents , Kinetics , Membranes, Artificial , Synaptic Transmission
6.
J Am Chem Soc ; 141(25): 9837-9853, 2019 06 26.
Article in English | MEDLINE | ID: mdl-31144503

ABSTRACT

Piscidins are histidine-enriched antimicrobial peptides that interact with lipid bilayers as amphipathic α-helices. Their activity at acidic and basic pH in vivo makes them promising templates for biomedical applications. This study focuses on p1 and p3, both 22-residue-long piscidins with 68% sequence identity. They share three histidines (H3, H4, and H11), but p1, which is significantly more permeabilizing, has a fourth histidine (H17). This study investigates how variations in amphipathic character associated with histidines affect the permeabilization properties of p1 and p3. First, we show that the permeabilization ability of p3, but not p1, is strongly inhibited at pH 6.0 when the conserved histidines are partially charged and H17 is predominantly neutral. Second, our neutron diffraction measurements performed at low water content and neutral pH indicate that the average conformation of p1 is highly tilted, with its C-terminus extending into the opposite leaflet. In contrast, p3 is surface bound with its N-terminal end tilted toward the bilayer interior. The deeper membrane insertion of p1 correlates with its behavior at full hydration: an enhanced ability to tilt, bury its histidines and C-terminus, induce membrane thinning and defects, and alter membrane conductance and viscoelastic properties. Furthermore, its pH-resiliency relates to the neutral state favored by H17. Overall, these results provide mechanistic insights into how differences in the histidine content and amphipathicity of peptides can elicit different directionality of membrane insertion and pH-dependent permeabilization. This work features complementary methods, including dye leakage assays, NMR-monitored titrations, X-ray and neutron diffraction, oriented CD, molecular dynamics, electrochemical impedance spectroscopy, surface plasmon resonance, and quartz crystal microbalance with dissipation.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Histidine/chemistry , Lipid Bilayers/metabolism , Surface-Active Agents/metabolism , Amino Acid Sequence , Animals , Antimicrobial Cationic Peptides/chemistry , Fish Proteins/chemistry , Fish Proteins/metabolism , Fishes , Fluoresceins/metabolism , Fluorescent Dyes/metabolism , Hydrogen-Ion Concentration , Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Permeability/drug effects , Phosphatidylcholines/chemistry , Phosphatidylglycerols/chemistry , Surface-Active Agents/chemistry
7.
Anal Biochem ; 536: 90-95, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28822686

ABSTRACT

Human monoacylglycerol lipase (hMAGL) plays a key role in homeostatic tuning of the endocannabinoid signaling system and supports aggressive tumorogenesis, making this enzyme a promising therapeutic target. hMAGL features a membrane-associated lid domain that regulates entry of endocannabinoid lipid substrates into the hydrophobic channel accessing the active site, likely from the membrane bilayer. The present work applied simultaneous surface plasmon resonance and electrochemical impedance spectroscopy measurements to show that, in absence of the substrate, hMAGL can remove phospholipid molecules from the membrane and, thereby, disintegrate pre-formed, intact, tethered phospholipid bilayer membrane mimetics (tBLMs) composed of unsaturated phosphatidylcholines. To probe the mechanism of hMAGL-induced on tBLMs compromise, we investigated the effect of wild type and mutant hMAGLs and hMAGL rendered catalytically inactive, as a function of concentration and in the presence of chemically distinct active-site inhibitors. Our data show that hMAGL's lid domain and hydrophobic substrate-binding pocket play important roles in hMAGL-induced bilayer lipid mobilization, whereas hydrolytic activity of the enzyme does not appear to be a factor.


Subject(s)
Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Monoacylglycerol Lipases/chemistry , Monoacylglycerol Lipases/metabolism , Phospholipids/chemistry , Phospholipids/metabolism , Binding Sites , Dielectric Spectroscopy , Humans , Monoacylglycerol Lipases/genetics , Mutation , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Surface Plasmon Resonance
8.
Proc Natl Acad Sci U S A ; 114(18): E3622-E3631, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28420794

ABSTRACT

Dimeric tubulin, an abundant water-soluble cytosolic protein known primarily for its role in the cytoskeleton, is routinely found to be associated with mitochondrial outer membranes, although the structure and physiological role of mitochondria-bound tubulin are still unknown. There is also no consensus on whether tubulin is a peripheral membrane protein or is integrated into the outer mitochondrial membrane. Here the results of five independent techniques-surface plasmon resonance, electrochemical impedance spectroscopy, bilayer overtone analysis, neutron reflectometry, and molecular dynamics simulations-suggest that α-tubulin's amphipathic helix H10 is responsible for peripheral binding of dimeric tubulin to biomimetic "mitochondrial" membranes in a manner that differentiates between the two primary lipid headgroups found in mitochondrial membranes, phosphatidylethanolamine and phosphatidylcholine. The identification of the tubulin dimer orientation and membrane-binding domain represents an essential step toward our understanding of the complex mechanisms by which tubulin interacts with integral proteins of the mitochondrial outer membrane and is important for the structure-inspired design of tubulin-targeting agents.


Subject(s)
Biomimetic Materials/chemistry , Mitochondrial Membranes/chemistry , Tubulin/chemistry , Animals , Biomimetic Materials/metabolism , Cattle , Mitochondrial Membranes/metabolism , Protein Binding , Protein Domains , Tubulin/metabolism
9.
Membranes (Basel) ; 6(3)2016 Jun 24.
Article in English | MEDLINE | ID: mdl-27348008

ABSTRACT

Tethered lipid bilayer membranes (tBLMs) have been used in many applications, including biosensing and membrane protein structure studies. This report describes a biosensor for anthrax toxins that was fabricated through the self-assembly of a tBLM with B. anthracis protective antigen ion channels that are both the recognition element and electrochemical transducer. We characterize the sensor and its properties with electrochemical impedance spectroscopy and surface plasmon resonance. The sensor shows a sensitivity similar to ELISA and can also be used to rapidly screen for molecules that bind to the toxins and potentially inhibit their lethal effects.

10.
Langmuir ; 31(33): 9115-24, 2015 Aug 25.
Article in English | MEDLINE | ID: mdl-26221793

ABSTRACT

For integral membrane proteins, an assessment of their structures and interactions within a biomimetic lipid bilayer environment is critical for evaluating their cellular function. Hydrophobic sequences prevalent within transmembrane domains, however, make these proteins susceptible to aggregation and, thus, create difficulties in examining their structural and functional properties via canonical techniques. Working exclusively with single-pass transmembrane (TM) segments of bitopic membrane proteins, in the form of soluble peptides, bypasses many of the pitfalls of full-length protein preparations while allowing for the opportunity to examine the properties of TM domains within biomimetic membrane environments. In this study, peptides mimicking the TM domains of the epidermal growth factor receptor (EGFR) and CD4 co-receptor, both cell-signaling surface receptors, have been reconstituted into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayers. The formation of their native α-helical structures within vesicle membranes was observed from circular dichroism, and full partition of the peptides into the membrane was demonstrated by tryptophan fluorescence and neutron reflectivity (NR). Using an engineered planar lipid bilayer system ideal for surface characterization methods, such as surface plasmon resonance (SPR) and NR, the TM peptides, functionalized with a N-terminal biotin tag, proved capable of "activating" a membrane surface, as evidenced by the capture of streptavidin. On the basis of these initial assessments, we anticipate these membrane-bound peptides will provide a versatile platform for understanding the intricate roles of receptor TM domains in cell signaling.


Subject(s)
CD4 Antigens/chemistry , ErbB Receptors/chemistry , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Humans , Protein Structure, Tertiary
11.
Chem Commun (Camb) ; 49(26): 2685-7, 2013 Apr 04.
Article in English | MEDLINE | ID: mdl-23435270

ABSTRACT

We have developed a method based on self-assembly of thiols on Au substrates to immobilize membrane proteins at interfaces. Using water soluble nitrilotriacetic acid (NTA)-terminated oligo(ethylene glycol) thiols, a histidine-tagged G protein-coupled membrane receptor (GPCR) was captured in a defined orientation with little nonspecific binding.


Subject(s)
Receptors, G-Protein-Coupled/chemistry , Ethylene Glycol/chemistry , Gold/chemistry , Models, Molecular , Molecular Structure , Nitrilotriacetic Acid/chemistry , Solubility , Sulfhydryl Compounds/chemistry , Surface Properties , Water/chemistry
12.
Anal Biochem ; 349(2): 247-53, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16298323

ABSTRACT

A general method to develop surface-based assays for transmembrane (TM) receptor function(s) without the need to isolate, purify, and reconstitute the proteins is presented. Based on the formation of an active surface that selectively immobilizes membrane vesicles, the method is illustrated using the chemokine receptor CCR5, a member of the largest family of cell surface eukaryotic TM proteins, the G protein-coupled receptors (GPCRs). The method begins with a protein-resistant surface containing a low percentage (1-5%) of surface-bound biotin on gold as the initial template. Surface plasmon resonance (SPR) data show specific immobilization of functional CCR5 after the initial template is activated by immobilization of rho 1D4 antibody, an anti-rhodopsin monoclonal antibody specific for the carboxyl terminal nine amino acids on bovine rhodopsin that had been engineered into the carboxyl terminus of CCR5, and exposure to vesicles obtained from mammalian cells transfected with a synthetic human CCR5 gene. Activation of the initial template is effected by sequential immobilization of avidin, which binds to the biotin in the initial template, a biotinylated goat anti-mouse immunoglobulin G (Bt-IgG), which binds to the avidin binding sites distal to the surface and the F(c) portion of the rho 1D4 antibody through its F(ab) region(s) and finally rho 1D4. This approach establishes a broad outline for the development and application of various assays for CCR5 functions. SPR data also showed that vesicle immobilization could be achieved through an integrin-integrin antibody interaction after activation of the initial template with a goat anti-human integrin beta1 antibody. These results suggest that the generic nature of the initial platform and flexibility of the subsequent surface activation for specific immobilization of membrane vesicles can be applied to the development of assays for other GPCRs or TM receptors for which antibodies are available or can be engineered to contain a particular antibody epitope.


Subject(s)
GTP-Binding Proteins/metabolism , Membrane Proteins/chemistry , Receptors, CCR5/chemistry , Animals , COS Cells , Chlorocebus aethiops , Humans , Receptors, CCR5/metabolism , Surface Plasmon Resonance
13.
J Am Chem Soc ; 126(42): 13639-41, 2004 Oct 27.
Article in English | MEDLINE | ID: mdl-15493920

ABSTRACT

The adsorption of fibrinogen (Fb) and bovine serum albumin onto polycrystalline Au coated with HS(CH2)3O(CH2CH2O)5CH3 was determined by surface plasmon resonance from bare Au (0% coverage) to the complete ( approximately 100% coverage) self-assembled monolayer (SAM). Both proteins exhibit similar adsorption curves with common onset ( approximately 60% coverage) and range ( approximately 60% to 80% coverage) of minimal protein adsorption. Reflection-absorption infrared spectroscopic data show that widespread order is not present in the films over this range of coverage, indicating loosely packed, bound oligomers that are uniformly distributed and fully screen the underlying substrate. On the basis of our data, we propose a mechanism of protein rejection by oligo(ethylene oxide) (OEO)-modified surfaces in terms of changes in free energy (DeltaGsystem; system = protein + surface) due to oligomer conformational constriction over an area greater than the contact area. Minimal protein adsorption corresponds to the maximum DeltaGsystem for a given compression. This controlled study of protein adsorption provides insights into the molecular level understanding of protein adsorption unavailable from previous polymer and comparative SAM studies.


Subject(s)
Fibrinogen/chemistry , Polyethylene Glycols/chemistry , Serum Albumin, Bovine/chemistry , Adsorption , Gold/chemistry , Kinetics , Spectrophotometry, Infrared , Surface Plasmon Resonance , Thermodynamics
14.
J Chem Phys ; 120(3): 1585-93, 2004 Jan 15.
Article in English | MEDLINE | ID: mdl-15268285

ABSTRACT

The cavity ring-down technique is used to probe the absolute optical response of the localized surface plasmon resonance (SPR) of a gold nanoparticle distribution to adsorption of trichloroethylene (TCE) and perchloroethylene (PCE) from the gas phase. Extended Mie theory for a coated sphere with a particle-size-dependent dielectric function is used to elucidate size-dispersion effects, the size-dependence of the SPR sensitivity to adsorption, and the kinetics of adsorption. An approximate Gaussian distribution of nanospheres with a mean diameter of 4.5 nm and a standard deviation of 1.1 nm, as determined by atomic force microscopy, is provided by the intrinsic granularity of an ultrathin, gold film, having a nominal thickness of approximately 0.18 nm. The cavity ring-down measurements employ a linear resonator with an intracavity flow cell, which is formed by a pair of ultrasmooth, fused-silica optical flats at Brewster's angle, where the Au film is present on a single flat. The total system intrinsic loss is dominated by the film extinction, while the angled flats alone contribute only approximately 5 x 10(-5)/flat to the total loss. Based on a relative ring-down time precision of 0.1% for ensembles averages of 25 laser shots from a pulsed optical parametric oscillator, the minimum detectable concentrations of PCE and TCE obtained by probing the SPR response are found to be 2 and 7 x 10(-8) mol/L, respectively, based on a 30 s integration time.

15.
Langmuir ; 20(4): 1311-6, 2004 Feb 17.
Article in English | MEDLINE | ID: mdl-15803712

ABSTRACT

The structural order and ordering conditions of the self-assembled monolayers (SAMs) of HSCH2CH2CH2O(EO)xCH3, where EO = CH2CH2O and x = 3-9, on polycrystalline gold (Au) were determined by reflection-absorption infrared spectroscopy (RAIRS), spectroscopic ellipsometry (SE), and electrochemical impedance spectroscopy. For x = 5-7, RAIRS and SE data show that the oligo(ethylene oxide) [OEO] segments adopt the near single phase, 7/2 helical conformation of the folded-chain crystal polymorph of crystalline poly(ethylene oxide), oriented normal to the substrate. These SAMs exhibit OEO segment structure and orientation identical to that found in a previous isostructural series [HS(CH2CH2O)6-8C18H37 SAMs. Vanderah, D. J., et al. Langmuir 2003, 19, 3752] and are anisotropic films for surface science metrology where structure is constant and thickness increases in 0.30 nm increments. In addition, this is the first example of OEO SAMs to attain this highly ordered, helical conformation where the (EO)x segment is separated from the Au-sulfur headgroup by a polymethylene chain. For x = 4, 8, and 9, the SAMs are largely helical but show evidence of nonhelical conformations and establish the upper and lower limits of the isostructural set. For x = 3, the SAMs are largely disordered containing some all-trans conformation. SAM order as a function of immersion time from 100% water and 95% ethanol indicates that the HSCH2CH2CH2O(EO)5-7CH3 SAMs order faster and under a wider range of conditions than omega-alkyl 1-thiaolio(ethylene oxide) [HS(EO)xCH3] SAMs, reported earlier (Vanderah, D. J., et al. Langmuir 2002, 18, 4674 and Vanderah, D. J., et al. Langmuir 2003, 19, 2612).

16.
J Am Chem Soc ; 124(49): 14676-83, 2002 Dec 11.
Article in English | MEDLINE | ID: mdl-12465979

ABSTRACT

The interaction of small phospholipid vesicles with well-characterized surfaces has been studied to assess the effect of the surface free energy of the underlying monolayer on the formation of phospholipid/alkanethiol hybrid bilayer membranes (HBMs). The surface free energy was changed in a systematic manner using single-component alkanethiol monolayers and monolayers of binary mixtures of thiols. The binary surfaces were prepared on gold by self-assembly from binary solutions of the thiols HS-(CH(2))(n)()-X (n = 11, X = CH(3) or OH) in THF. Surface plasmon resonance (SPR), electrical capacitance, and atomic force microscopy (AFM) measurements were used to characterize the interaction of palmitoyl,oleoyl-phosphatidylcholine (POPC) vesicles with the surfaces. For all surfaces examined, it appears that the polar part of surface energy influences the nature of the POPC assembly that associates with the surface. Comparison of optical, capacitance, and AFM data suggests that vesicles can remain intact or partially intact even at surfaces with a contact angle with water of close to 100 degrees. In addition, comparison of the alkanethiols of different chain lengths and the fluorinated compound HS-(CH(2))(2)-(CF(2))(8)-CF(3) that characterize with a low value of the polar part of the surface energy suggests that the quality of the underlying monolayer in terms of number of defects has a significant influence on the packing density of the resulting HBM layer.


Subject(s)
Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Adsorption , Alkanes/chemistry , Electric Capacitance , Hydrocarbons, Fluorinated/chemistry , Kinetics , Membranes/chemistry , Microscopy, Atomic Force , Sulfhydryl Compounds/chemistry , Surface Plasmon Resonance , Surface Properties , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...