Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 39(26): 4970-4982, 2020 06.
Article in English | MEDLINE | ID: mdl-32507861

ABSTRACT

Cancer stem cells (CSCs) are cells within tumors that maintain the ability to self-renew, drive tumor growth, and contribute to therapeutic resistance and cancer recurrence. In this study, we investigate the role of Zinc finger and SCAN domain containing 4 (ZSCAN4) in human head and neck squamous cell carcinoma (HNSCC). The murine Zscan4 is involved in telomere maintenance and genomic stability of mouse embryonic stem cells. Our data indicate that the human ZSCAN4 is enriched for, marks and is co-expressed with CSC markers in HNSCC. We show that transient ZSCAN4 induction for just 2 days increases CSC frequency both in vitro and in vivo and leads to upregulation of pluripotency and CSC factors. Importantly, we define for the first time the role of ZSCAN4 in altering the epigenetic profile and regulating the chromatin state. Our data show that ZSCAN4 leads to a functional histone 3 hyperacetylation at the promoters of OCT3/4 and NANOG, leading to an upregulation of CSC factors. Consistently, ZSCAN4 depletion leads to downregulation of CSC markers, decreased ability to form tumorspheres and severely affects tumor growth. Our study suggests that ZSCAN4 plays an important role in the maintenance of the CSC phenotype, indicating it is a potential therapeutic target in HNSCC.


Subject(s)
Carcinoma, Squamous Cell/genetics , Chromatin Assembly and Disassembly/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/genetics , Neoplastic Stem Cells/metabolism , Transcription Factors/genetics , Acetylation , Animals , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/therapy , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/therapy , Histones/metabolism , Humans , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Phenotype , RNA Interference , Transcription Factors/metabolism , Xenograft Model Antitumor Assays/methods
2.
Stem Cell Res Ther ; 8(1): 174, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28750664

ABSTRACT

BACKGROUND: Human adult stem cells hold the potential for the cure of numerous conditions and degenerative diseases. They possess major advantages over pluripotent stem cells as they can be derived from donors at any age, and therefore pose no ethical concerns or risk of teratoma tumor formation in vivo. Furthermore, they have a natural ability to differentiate and secrete factors that promote tissue healing without genetic manipulation. However, at present, clinical applications of adult stem cells are limited by a shortage of a reliable, standardized, and easily accessible tissue source which does not rely on specimens discarded from unrelated surgical procedures. METHOD: Human tonsil-derived mesenchymal progenitor cells (MPCs) were isolated from a small sample of tonsillar tissue (average 0.88 cm3). Our novel procedure poses a minimal mechanical and enzymatic insult to the tissue, and therefore leads to high cell viability and yield. We characterized these MPCs and demonstrated robust multipotency in vitro. We further show that these cells can be propagated and maintained in xeno-free conditions. RESULTS: We have generated tonsillar biopsy-derived MPC (T-MPC) lines from multiple donors across a spectrum of age, sex, and race, and successfully expanded them in culture. We characterized them by cell surface markers, as well as in vitro expansion and differentiation potential. Our procedure provides a robust yield of tonsillar biopsy-derived T-MPCs. CONCLUSIONS: Millions of MPCs can be harvested from a sample smaller than 1 g, which can be collected from a fully awake donor in an outpatient setting without the need for general anesthesia or hospitalization. Our study identifies tonsillar biopsy as an abundant source of adult MPCs for regenerative medicine.


Subject(s)
Cell Separation/methods , Multipotent Stem Cells/pathology , Palatine Tonsil/pathology , Biopsy , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...